Thursday, 9 July 2020

Drones for Tower Inspections and Optimization


With the advancements in drone design, technology and automation, over the last couple of years I have noticed quite a few announcements about drones for tower inspections and optimisation. It would not be possible to cover all the companies here that have a solution but here are three big well known names in our industry that we are going to look in this post.


Back in March 2019, NTT Docomo announced that they have agreed to test docomo sky(TM) for Tower Inspection with PT Solusi Tunas Pratama Tbk. (STP), a company that leases out telecommunication towers in Indonesia. 

The service uses drones to photograph base stations and telecom towers and transmit the information to a command center in real time. The partners hope to expand the scope of the test to include other locations and facilities prior to launching a full-scale commercial service in the first half of this year.

The system being tested is based on an operational drone-based tower inspection system developed by DOCOMO for its commercial network throughout Japan, and supports the "docomo sky" ground control station (GCS) app for assistance in inspection tasks, enabling drone operators to input flight data with ease. For the test, DOCOMO will provide its cloud-based platform for operational support and data analysis. The drones fly automatically, take photos and transmit the images via the platform in real time, enabling technicians to inspect the towers via the docomo sky web browser immediately.

Indonesia is undergoing rapid urban development, including the construction of tall buildings and transportation infrastructure, which has resulted in large structures occasionally interfering with radio propagation from telecom towers. STP, which manages such facilities, must dispatch technicians to visually check conditions by climbing the towers. The new service will enable remote inspections to be conducted much more quickly and safely than at present, thereby allowing STP to achieve greater customer satisfaction with its service to mobile network operators.

In addition, the service is expected to support efforts to speed up procedures for inspecting and restoring telecom facilities in Indonesia whenever a natural disaster occurs.

Going forward, DOCOMO will continue to develop and upgrade its advanced drone services, one of the many ways the company is serving society by leveraging its diverse technical assets and know-how, including mobile network technology and platform businesses.

This week Docomo announced new features of drone platform "docomo sky" and new tariff. Details (in Japanese) available here.


Back in April this year, Rakuten Mobile announced that it will collaborate with Rakuten Group company Rakuten AirMap, Inc., which provides solutions supporting safe and compliant drone operations to enterprises, airspace authorities and drone operators in Japan, in using drones to conduct completion inspections of base stations for its mobile network.

As Rakuten Mobile expands its base station network across Japan, drones will take multi-angle photographs of the newly constructed base stations. In typical completion inspections, an engineer climbs the antenna tower on which the base station is installed and visually inspects the equipment. However, these inspections raise a number of concerns regarding safety, the time required to carry out the inspections and personnel costs. By carrying out the work with drones, completion inspections can be conducted in a shorter amount of time, more efficiently and with a higher degree of safety. Completion inspections will be conducted using AirMap’s TowerSight, a unified system that allows tower companies and MNOs to transform their tower inspections using automated drone workflows.

To date, Rakuten Mobile has conducted limited trials of base station completion inspections using drones in certain areas, and will now fully adopt drones for completion inspections nationwide. By using drones in completion inspections, Rakuten Mobile aims to improve the efficiency of base station construction and accelerate the expansion of its network area.

Drone captures of the base station and surrounding area are shared through Rakuten AirMap’s cloud-based inspection system, allowing staff working on the construction of the base stations to manage and share information efficiently and chronologically.

Rakuten AirMap has been instrumental in establishing the infrastructure for safe and scalable drone use in Japan and will leverage its expertise in completion inspections to contribute to the growth of drone applications in business. The two companies are also looking into the use of drone-based inspections during natural disasters and other emergency situations.

The official Rakuten Blog has a much more detailed article here.


The final announcement is from Samsung Electronics where they announced a successful demonstration of their new drone-based antenna configuration measurement solution for 4G and 5G networks in the company’s campus.

This automated solution will offer operators a simplified way to more efficiently manage cell sites, improve employee safety, and ultimately optimize network performance.

In the demonstration, an engineer on the ground used a smartphone with a remote control application to fly a camera-equipped drone that captured photos of the antennas installed on a building’s rooftop. The visual data was viewable via the engineer’s smartphone and then was transmitted to a cloud server within seconds. The deep learning-based artificial intelligence (AI) solution instantly verified the rotation and tilt of the antennas, so that the engineers could determine if the antennas were installed correctly at predefined optimal angles.

It took less than a minute to transmit the data and process the results, enabling the engineer to view results on-site in real-time on the smartphone screen. The demonstration verified that Samsung’s solution can accomplish the task within 15 minutes – starting from flying the drone to the delivery of measurement results. This compares to the several hours it can take for a tower climber to prepare, climb up and down a cell tower, and measure antenna configurations.

In conjunction with this new solution, Samsung will continue to add additional features, which will allow the engineers to remotely adjust the antenna tilts to its optimal position from a mobile device and PC.

Cellular antennas are typically installed at significant heights on sites such as cell towers or rooftops, in order to ensure optimal mobile coverage. Operator field engineers ordinarily carry heavy and expensive equipment as they climb up cell sites to measure the antenna configurations. With Samsung’s drone-based AI solution, operators will have a new approach for reinforcing the safety of their employees.



The solution’s safety benefits will be especially helpful during site audit and maintenance in the U.S., which often requires two field personnel to be dispatched to a site to audit or adjust the antenna angles -- and requires climbs that use more advanced safety training.

“As the number of 5G network sites grows, there has been a heightened focus on network performance by operators, and we are seeing an increased market demand for intelligent solutions for site maintenance,” said Sohyong Chong, Vice President and Head of Network Automation, Networks Business at Samsung Electronics. “Once this solution launches globally later this year, it will offer a safer, more cost-effective and convenient way to satisfy market demands, leveraging our unique capabilities in combining the latest technologies—drones, AI and 5G.”

Samsung Networks is a pioneer in the successful delivery of 5G end-to-end solutions ranging from chipset, radio and core network to cloud platform for both mid-band (2.5GHz/3.5GHz) and mmWave (28GHz/39GHz) frequencies. The company has been supporting 5G commercial services in leading markets, including Korea, U.S. and more recently Japan, where the majority of worldwide 5G subscribers are currently located.

Tuesday, 30 June 2020

QCell - ZTE’s 5G Solution for Gigabit Indoor User Experience

ZTE unveiled its 5G RAN product portfolio for the 'Networks of the Future' back in February, just in time for the MWC that was unfortunately cancelled. One of the products was QCell.

ZTE’s QCell 5G indoor solution provides not only multi-mode, multi-frequency, ultrawide-bandwidth and large-capacity 4TR products, but also a more budget-friendly 2TR product that supports 300 MHz bandwidth, which is ideal for indoor RAN sharing and rapid introduction of 5G with lower deployment cost.



Yesterday, ZTE announced that along with the Jiangsu branch of China Telecom, they have deployed 5G 200 MHz Qcell 4T4R digital indoor distribution system in the indoor scenarios with high amounts of data traffic, such as shopping malls and subway stations, in Xuzhou, China. The system provides high-quality 5G indoor coverage, and accelerates future 5G indoor system deployment.


This commercial deployment has employed ZTE’s latest 5G Qcell ultra-wideband product series, which supports 200MHz continuous ultra-large bandwidth at 3.5 GHz frequency band, and 100MHz+100MHZ dual-carrier aggregation technology that doubles download rate. 

For the time being, by virtue of China Telecom’s 100MHz 5G bandwidth, the single 5G user download rate has turned out to exceed 1 Gbps. In case of the activation of 200 MHz bandwidth in the future, the single 5G user download rate will exceed 2 Gbps, providing an excellent 5G experience. 

Moving forward, ZTE will give full play to its technical and commercial advantages in the 5G field, continue to work closely with China Telecom to build high-quality 5G digital indoor networks, and develop 5G industrial applications, thereby facilitating the development of smart cities.

A partner feature on Mobile World Live provides a lot more technical details:

The ZTE QCell system consists of pRRU/pBridge/BBU (Baseband Unit) 3-level equipment. The 3-level efficient architecture supports the rapid cabling of CAT6a network cables or optical-electrical hybrid cables. It supports pBridge multi-level cascading, cell splitting and combination, and can rapidly respond to the operator’s requirements for the complex networking of different frequency bands and systems, rapid adjustment and flexible expansion of capacity and coverage.

The 300 MHz large bandwidth products with multi-mode and multi-frequency band enable the ZTE QCell solution the powerful network architecture integration capability, to meet the requirements of multi-operator’s co-building and sharing and have the compatibility and adaptability of global deployment. It not only supports the overlay networking of the existing DAS and 5G QCell, but also supports the feed-in of the GSM/UMTS DAS RF signals from different manufacturers in the existing network through the MAU, to protect the operator’s existing indoor distribution investment and introduce value-added services based on 5G coverage and precise positioning. QCell supports GSM/CDMA/UMTS/FDD LTE/TDD LTE/5G NR, which makes once deployment to implement the multi-operator/multi-band/multi-system indoor distribution system that achieves agile, long-term, co-construction, sharing, and lowest cost indoor distribution network, multi-system equipment and common management and maintenance. It only needs software upgrade for service expansion and network architecture evolution in the future so as to protect the investment in early-stage 5G indoor deployment and reduce the overall TCO cost from the perspective of long-term operation.

ZTE adopts innovative design of QCell products to reduce the cost and power consumption of equipment units. The pRRU transceiving channel not only supports high-performance 4T4R, but also supports low-cost 2T2R, further reducing the cost and power consumption. The pBridge enhanced product is designed to reduce the cost and power consumption after the electrical interface and optical interface are separated and the SoC solution is introduced. Moreover, the simplest BBU product is introduced to further reduce the QCell system networking cost.

The hierarchical QCell networking well matches diverse scenarios

Based on the analysis of the requirements for indoor distribution of operators, vertical industry enterprises, and large business owners, the indoor distribution scenarios can be divided into three types: capacity-sensitive scenario (type A), capacity and coverage balancing scenario (type B), and coverage-sensitive scenario (type C).

For the above three types of scenarios, ZTE provides hierarchical QCell networking solutions. Compared with the Benchmark QCell solution of 4T4R built-in antenna pRRU, ZTE provides a cost reduction solution of 2T2R built-in antenna pRRU and a low cost solution of 4T4R pRRU+ connected with external DAS antenna according to the scenario requirements, thus achieving the accurate network construction and saving operators’ investment. Evaluations based on the 40,000 square meters isolated indoor distribution scenario show: for scenario type B, the total main equipment investment is reduced by about 1/4; for scenario type C, through the external DAS antenna, the single-pRRU coverage area is greatly expanded and the overall investment is greatly reduced by about 1/2.

Extensive QCell Digital Smart Indoor Application, Making 5G Service Ubiquitous

The QCell digital intelligent indoor distribution system can be deployed for indoor and semi-indoor to achieve wireless coverage and service provision in high-value areas, such as large traffic hub, large stadiums, CBD and university campuses.

The large-scale traffic hub scenarios, such as airports, railway stations, and subway stations, have a large area and high population density, and are high-value areas for operators to guarantee both coverage and performance. The Wi-Fi system of most transportation hubs is often limited in capacity and cannot meet passengers’ requirements for future 4K/8K HD video. In Changsha Huanghua Airport, ZTE deployed the indoor high-capacity digital intelligent QCell solution with high-density networking and the first 3-carrier aggregation technology in China, to achieve the throughput of 8400Mbps for the airport. The solution supports 3,500 people simultaneously to enjoy HD video smoothly. At present, the QCell solution has been widely used in various metropolitan airports and railway hub stations, including Changsha Airport in Hunan, Xiaoshan Airport in Hangzhou, Nanjing South Station and Xining Railway Station, serving millions of passengers. Nanjing South Railway Station has a total building area of 45.8 million square meters, which is the largest railway station in Asia. After QCell is deployed, the SINR is increased by 13% and the throughput is increased by 91.8%.

The large stadiums, such as stadiums and exhibition halls, have a large number of users and a huge amount of data volume in a centralized manner. The QCell solution supports vertical partitioning to achieve seamless multi-layer coverage from the upper stands, the middle mezzanines to the bottom passages. At present, the QCell solution has been widely deployed in large stadiums such as Hangzhou Olympic Center, Hangzhou Expo Center, Suzhou International Expo Center, and Shenzhen New High-Tech Center. In August 2019, the ZTE 5G Smart Digital Indoor Division QCell solution covered many important sports venues including the Main Conference venue of the Red Lantern Stadium for the second National Youth Games (Shanxi), and made the Game the first “5G Games” in China. Through such technologies as MEC deployment and low delay coding, the ZTE 5G Smart stadium solution reduces the end-to-end live broadcast delay to 1 second, and provides audience with the excellent experience comparable to watching on the spot. In addition, ZTE also provides audience with brand-new experience in three 5G scenarios: immersive viewing experience from multi-angle live streaming, “Flexible Zooming” and “360-degree Free View” services. As an iconic application in the Game, the 5G Smart Stadium Solution provided an excellent demonstration for the live broadcast of sports events.

A recent promo video of QCell is embedded below:




Related Posts:

Wednesday, 24 June 2020

Edge Computing and the Future of Small Cell Networks


Small Cell Forum (SCF) recently published report setting out how edge computing will impact the future of small cell networks, with particular focus on private 4G / 5G cellular networks. A survey of service providers for the paper showed that by 2025 almost 75% new indoor small cell deployments will be co-located with edge and/or private EPC. The paper (SCF 234) is available to download here.

The press release on this stated:

Edge Computing and Small Cell Networks identifies core synergies between edge computing (EC) and small cell networks (SCNs) and highlights how those synergies are present across multiple domains – business, technical, deployment, product and vendor ecosystems.

It describes how the benefits of small cells co-located with edge can be applied to commercial and operational advantage in key industry segments, such as automation and Industry 4.0, worksites, mission critical services, enterprises and public safety. The paper looks in detail at the architectures and deployment considerations for edge and small cells in three premises-based use cases:
  • Fully private cellular networks (PCNs)
  • PCNs that have a roaming relationship with MNO networks
  • PCNS integrated with MNO networks

While small cells and edge computing have significant potential to meet enterprise demand and drive new business models for service providers, best practice needs to be agreed and adopted, and technical barriers/gaps addressed to optimize that potential for both enterprises and service providers. Key areas of focus include:
  • Edge network recommendations: For edge computing solutions, the ‘edge network’ has to work in concert with the ‘core network’ via open interfaces and APIs to enable true multi-vendor ecosystem. SCF believes that current specifications are incomplete and need enhancements.
  • Edge platform services and applications recommendations: Open and consistent APIs across multiple organizations must evolve and align to enable a broad ecosystem of edge platform services and edge applications.
  • EC platform solution recommendations: Blueprints/reference-designs/solutions for open-source edge computing platforms are urgently required for rapid growth of the EC ecosystem.
  • EC and small cell recommendations: Design/deployment blueprints must be available for core use cases to best leverage small cell/edge synergies to deliver multiple benefits: shared virtualized implementations leading to cost efficiencies; integrated network functions & mutually beneficial analytics (radio environment, RAN characteristics, location etc.) leading to advanced functionalities to the edge computing platforms.
  • EC infrastructure recommendations: In determining the COTS hardware for optimal edge computing infrastructure, service providers and enterprises shouldn’t be tempted to reinvent the wheel. There are already robust guidelines for data center & hardware design & implementations from TIA, BICSI and OCP that should be followed.

‘The benefits of edge computing are well known, but what we have begun to demonstrate with this work is that small cells and edge will be critical for enabling service providers and enterprises to realize new profitable service opportunities,’ said Dr. Prabhakar Chitrapu, Chair of Small Cell Forum. ‘Small cells plus edge will also enable new business models for a broad spectrum of stakeholders, including edge infrastructure, edge network and edge platform as a service, as well as direct edge application services to subscribers, enterprises and service providers.’

Going forward, working in collaboration with other relevant Industry Forums, SCF will lead the development of a set of harmonized and consistent set of application, network & system-level APIs to enable small cell networks to facilitate EC services and applications.

SCF will also spearhead the deployment of design blueprints for core use cases, leveraging small cell/edge synergies and open source environments.

The research was made possible by an extended collaboration of leading MNOs, OEMs and Infrastructure providers, brought together by Small Cell Forum, including; American Tower, AT&T, Crown Castle, Druid, Intel, Nokia and Reliance Jio.

A video by Small Cell Forum provides a bit more background of this new Edge Computing and Small Cell Networks whitepaper:



Edge computing is a hot topic and every time we have posted something, we have got a lot of engagement on the topic.



Related Posts:

Tuesday, 16 June 2020

ZTE 'Unisite+' helps accelerate co-site deployment of 2G, 3G, 4G and 5G with fewer devices

One of the things ZTE had planned to show during MWC 2020 is a more 'Capable', 'Compact' and 'Faster' 5G RAN Product Portfolio for the Networks of the Future. While we missed out on that, here is once such product called 'Unisite+'

Pic source: Mobile World Live

ZTE describes this as:

Driven by the idea of maximizing RATs, bands and capacity with as few devices as possible, ZTE has launched UniSite+, the upgraded version of its UniSite solution. The A + P design enables replacing all the antennas and adding a new 5G AAU all by just one single radio unit. The active part of the solution offers flexible options between 64TR and 32TR over N78, N41, and N79 bands, and the passive part offers 14 ports and supports all sub-3GHz frequency bands. 

The solution employs two tri-band UBR (Ultra Broadband Radio) products, the industry’s first 1.8G+2.1G+2.6G product, and the 700M+800M+900M with the industry’s largest capacity and smallest form factor. 

By deploying the UniSite+ solution, the operators can easily realize "1 + 2 = 7," the concept of using one antenna and two radio units to support 7-band all-RAT deployment. Therefore, it is the simplest site solution in the industry which reduces the number of required devices by more than 70%.

In addition to radio simplification, the latest baseband technology is also now at another superb level. ZTE has launched the industry's first all-RAT baseband board, which supports 2G, 3G, 4G and 5G in one board to facilitate “site-intervention-free” for 5G evolution.

While the radio sites get greatly simplified, ZTE has also reduced the power consumption of the equipment by 30% with new-generation chipsets and high-efficiency power amplifiers. 

To meet the requirements of 5G transmission, the UniSite+ solution also includes the latest microwave products with a transmission capacity up to 25 Gbps and improved latency performance. In addition, the solution can work with the ordinary frequency band microwave of a 3rd-party solution to form a Multiband group, thereby providing the best MPLS/SDN network upgrade solution to maximize the return on investment of operators.

Here are couple of videos in the playlist, one recent one about Unisite+ and the other is about Unisite from last year that provides background to this.



Related posts:

Friday, 12 June 2020

IOWN - Innovative Optical and Wireless Network

If you are not watching the optical networking space, chances are you have not heard of this Innovative Optical and Wireless Network (IOWN) initiative which was proposed by NTT and is now being standardised by IOWN Global Forum.


NTT Technical Review published a detailed article on this topic earlier this year. The following is from the article:

To create an affluent and diverse society, NTT has proposed the Innovative Optical and Wireless Network (IOWN) concept, which is a new communication infrastructure that can provide high-speed broadband communication and enormous computing resources by using innovative technologies including optical technologies. NTT also believes that these innovative technologies can optimize society as a whole and individuals using all types of information. IOWN uses three elements, All-Photonics Network, Digital Twin Computing, and Cognitive Foundation® to create a smart world, as shown below (Fig. 3).

  • Dramatic reduction in power consumption and broadening of communication bandwidth can provide enormous processing capacity for the explosive increase in computational complexity.
  • By increasing the capacity and reducing the delay of communications, it is possible to share in real time huge amounts of information collected from various sensors, exceeding the five senses.
  • Dedicated use of optical wavelengths provides a high level of confidentiality and stability and can be used for mission-critical services.
  • Multi-orchestration capabilities for centralized management of various resources, enabling resource utilization across industrial and regional domains
  • The creation of a cyberspace that replicates and expands the real world by combining various digital twins and human models


All-Photonics Network

As the number of people and things connected to a network increase, advanced, complex, and large-scale information processing such as for AI will require a vast amount of power consumption. To reduce such power consumption and meet mission critical service requirements, NTT applies photonics technologies to end-to-end environments for achieving ultra-low-power consumption, large-capacity, and low-delay networks. For example, NTT aims to increase power efficiency 100 fold by developing transmission devices that control optical wavelengths and photonics-electronics convergence devices. NTT also aims to expand transmission capacity 125 fold by increasing multiplexing in optical fibers and expanding multicores in a fiber (Fig. 4).



Digital Twin Computing

A digital twin is an image of real-world objects, such as production machines, aircraft engines, and automobiles in factories, by mapping their shapes, conditions, and functions into cyberspace and expressing them accurately. Using digital twins enables us to analyze the current situation, predict the future, and simulate objects in cyberspace.

Digital Twin Computing is a new computing paradigm that makes it possible to reproduce and simulate the interaction between things and people freely in cyberspace by conducting computations such as exchange, fusion, duplication, and synthesis for many digital twins representing the real world.

Cognitive Foundation®

To achieve low-power-consumption, high-capacity, high-quality communication networks and large-scale interactions between people and objects, it is necessary to select and use various resources appropriately. The Cognitive Foundation is an infrastructure that provides a set of functions necessary to build and operate services by using various methods of collecting, processing, storing, and communicating data scattered throughout various locations.


NTT recently released Technology Report for Smart World 2020 which introduces 11 technologies that they think are crucial to thinking about the changing world ahead. According to them, these technologies are the focus of their own research and development efforts, and are also being vigorously pursued around the world. Some of these technologies are key components of IOWN, while others can be expected to see wide adoption as a result of IOWN according to the report.

Back in April, IOWN GF unveiled its Vision 2030 White Paper. With artificial intelligence, virtual and augmented realities, 5G, dynamic computing scaling, blockchain and other advanced technologies on the verge of becoming part of the daily lives for billions of people, IOWN GF’s Vision 2030 is to define and build a global communications infrastructure over the next decade capable of sustainably maximizing the benefits these new technologies offer society and businesses. The hope is to create a smarter world where technology is used more naturally and becomes more pervasive for all. Download the Innovative Optical and Wireless Network Global Forum Vision 2030 and Technical Directions White Paper here.



Finally, the videos will provide a much clearer idea about the vision of IOWN. As always, feel free to provide your insights in the comments below.

Wednesday, 3 June 2020

NEC's 5G Antenna-equipped Smart Street Lighting to be Trialled in Tokyo

Smart poles and lamp posts are popular topic in this blog. You will find links of many examples at the bottom of this post. NEC has a Smart Street Lighting solution that is designed with smart cities in mind. You can read more about it here.

In a recent press release, it announced

Sumitomo Corporation has concluded an agreement with the Tokyo Metropolitan Government on the preliminary/trial installation and verification of smart poles being carried out by the government. Together with NEC Corporation, Sumitomo Corporation intends to install two types of smart poles in the Nishi-shinjuku area of Tokyo by the end of June 2020.

In its "TOKYO Data Highway Basic Strategy" formulated in August 2019, the Tokyo Metropolitan Government calls for constructing an ultra-high-speed mobile Internet network in Tokyo. As part of that effort, the government is looking to install smart poles at an early date in the Nishi-shinjuku area, a priority improvement zone. Smart poles are multi-functional poles equipped with communication base stations, Wi-Fi, street lighting, signage, etc., and they are expected to serve as infrastructure useful for the provision of new community services.


In partnering with the Tokyo Metropolitan Government, Sumitomo Corporation and NEC will be installing two types of smart poles in the Nishi-shinjuku area by the end of June 2020 to verify their utility under both ordinary and emergency circumstances. More specifically, the two companies plan to install two models of NEC's "Smart Street Lighting" equipped with functions such as digital signage and pedestrian traffic flow analysis cameras; one model will be outfitted with a 5G shared antenna system for joint use by multiple telecommunications carriers, while the other, a site-sharing model, will be equipped with 5G base stations for multiple telecommunications carriers. With the aim of bringing 5G shared antenna systems into full-scale use by March 2021, efforts will be made to extend these systems across the entire metropolis and to help develop services for Tokyo residents/visitors through the construction of efficient infrastructure by accumulating knowledge on the installation and operation of smart poles.

Sumitomo Corporation is engaged in a variety of information and telecommunications endeavors, being involved with the cable television business in Japan and investing in telecommunications and telecommunication tower businesses overseas. In the 5G sector, it has taken part in 5G base station sharing verification projects alongside Tokyu Corporation, Osaka Metro Co., Ltd., and Tokyo's Minato Ward. In addition to advancing the "TOKYO Data Highway Basic Strategy" through this latest agreement, Sumitomo Corporation will in the future be collaborating with companies, local governments and others to create 5G-related businesses.

NEC has positioned the public safety business as an engine for its global growth, and this verification project will accelerate and enhance the development of solutions and services to realize "NEC Safer Cities", while helping to create safer and more secure streets.

A concept video explaining how NEC's Smart Street Lighting will be used in future cities as follows:




Related Posts:

Thursday, 28 May 2020

Drivers and Enablers for Large Scale Small Cell Deployments

In the Cambridge Wireless Smart Cities & Small Cell seminar last year, Andrew Entwistle from New Street Research talked about "Small cells around the world: an analyst’s perspective". His presentation is embedded below (with permission). What I wanted to share with you was this one slide (pic above) looking at the drivers and enablers for a large-scale small cell deployment.

Interesting to see that even though there is a lot of potential for outdoor small cells in Europe, the enablers are not there, thereby making it difficult for a large-scale small cell deployment. 

With regards to the USA, I have posted about their small cells deployments many times. The thing is that the definition for small cell in the USA includes small form factor. So a small site with RRH would be considered a small cell. Anyway, check out these posts here and here.

Presentation as follows:



Related Posts:

Tuesday, 12 May 2020

Passive and Active Infrastructure Sharing

I have written about Network sharing before here. In that particular tutorial, my main focus was to explain Active Infrastructure / Network Sharing mainly. So the focus was on two most common approaches, MORAN and MOCN. The Passive Infrastructure / Network Sharing can be a bit involved as well depending on the agreement between the different parties. Here, let's focus on this.


Quoting from the GSMA whitepaper:

Passive infrastructure sharing is where non-electronic infrastructure at a cell site, such as power supply and management system, and physical elements such backhaul transport networks are shared. This form can be further classified into site sharing, where physical sites of base stations are shared and shared backhaul, where transport networks from radio controller to base stations are shared. Passive infrastructure sharing is the simplest and can be implemented per sites, which enables operators to easily share sites and maintain their strategic competitiveness depending on the sites shared. Operation is also easier with this form of sharing because network equipment remains separated. However, the cost-saving potential of sharing is limited relative to other forms of sharing.

Active infrastructure sharing is sharing of electronic infrastructure of the network including radio access network (consists of antennas/transceivers, base station, backhaul networks and controllers) and core network (servers and core network functionalities). This form can be further classified into MORAN (Multi-Operator Radio Access Network), where radio access networks are shared and dedicated spectrum is used by each sharing operator, MOCN (Multi-Operator Core Network), where radio access networks and spectrum are shared, and core network sharing, where servers and core network functionalities are shared.

As in the case of site sharing, MORAN and MOCN can be implemented per sites and enables strategic differentiation. However, operation of network equipment needs to be shared (or at least issues must be shared with participants) and therefore increases the complexity of sharing relative to site sharing. The cost-saving potential is greater than site sharing. Core network enables greater cost-saving potential but is complicated to operate and to maintain strategic differentiation. It is important to note that core network sharing has not been popular and only a few cases have been suspected to be so.

The pros and cons for different sharing types can be seen in the table above.

This old presentation from 2014, explains the pros and cons of the two passive sharing approach nicely


Passive sharing: Site + tower sharing

  • What is shared?
    • Cell site
    • Shelters, towers
    • Power, A/C
    • Security for buildings and systems
  • Potential advantages
    • Cost sharing for site acquisition, infrastructure, lease, maintenance, power
    • Reduced network footprint
  • Potential drawbacks
    • Entrants may not benefit if they lacks own sites to offer
    • Costly to negotiate and implement when established networks are being consolidated


Passive sharing: Backhaul

  • What is shared?
    • All elements of site sharing
    • Backhaul links: cables/fiber, leased lines, microwave
  • Advantages
    • Cost savings in equipment cost
    • Cost saving in deployment
      • Joint-digging of trenches (70-80% of costs)
      • Microwave links – reduced license fees
    • Faster deployment timeframe


The presentation has examples from different parts of the world and also pros and cons of active sharing. Check it out here.

Related Posts:

Monday, 4 May 2020

Samsung's 5G NR Integrated Radio for mmWave spectrum

At MWC LA last year, Samsung Electronics announced its new 5G New Radio (NR) Access Unit (AU) supporting 28GHz spectrum. This new AU brought together a radio, antenna and digital unit into one compact box, making it according to them, the industry’s first 3GPP compliant integrated radio for mmWave spectrum.


According to Samsung, by integrating these RU-DU technologies with 1,024 antenna elements for mmWave spectrum into one compact box, the new AU can be more easily installed on streetlight poles and building walls, providing operators a faster, simplified way to build out 5G networks.

The AU is also able to deliver an capacity of 10Gbps throughput, enabling operators to deliver higher 5G NR speeds to more users. Additionally, improved cost-efficiency is achieved by eliminating the need for ‘fronthaul’ fiber connections, thanks to the AU’s integration of the digital unit.

This video explains it nicely.



In addition, Samsung recently also announced that it has achieved the industry’s fastest 5G speeds in a lab demonstration that combined 800MHz of mmWave spectrum with MU-MIMO (Multi-User, Multiple-Input, Multiple-Output) technology, running on their AU.


According to their press release:

Using two test mobile devices, the demonstration achieved approximately 4.3Gbps speeds on each, reaching an industry peak speed of 8.5Gbps across both devices. In order to achieve the speed, two key technologies were used: carrier aggregation and MU-MIMO.

This demonstration highlights the key difference of 5G – its use of mmWave spectrum. The wide bandwidth from mmWave spectrum enables mobile operators to provide multi-gigabit speeds that lower band spectrums are unable to match. With multi-gigabit speeds, users can experience transformational 5G mobile services. Mobile operators will be able to deliver new and rich services such as 8K video streaming, AR remote learning and holistic VR teleconferencing as well as new use cases that are yet to be imagined.


Finally, this Tweet by Samsung Network shows how the AU uses an ultra-quiet convection cooling design that lowers operating costs and environmental noise.

Related Posts:

Monday, 27 April 2020

Huawei's 5G Book RRUs Start Delivering On Their Promises

We have blogged about Huawei's Book RRUs last year here. Now, Huawei and China Telecom Shenzhen (a.k.a. Telecom Shenzhen) have taken the lead in achieving the global ultra-large scale 3D networking that involves macro and pole base stations in China. Hundreds of 5G C-Band (3.4 - 4.2 GHz) Book RRUs were used to help the operator deliver an undifferentiated experience in 5G-covered areas.

Huawei announced in a press release:

Book RRU is an innovative product that is small in size, lightweight, and easy to deploy. This offers an effective approach of addressing challenges associated with insufficient site resources. 5G Book RRUs enable significant improvements in 5G in-depth coverage and user experience in residential areas while increasing network capacity.

In-depth coverage in residential areas, urban villages, upscale communities, and backstreet alleys is a long-standing challenge which has faced operators. Insufficient resources and difficult acquisition lead to difficult and time-consuming site deployment.

Lightweight 5G Book RRUs enable quick 5G deployment in residential areas by using walls, lamp poles, monitoring poles, and electricity poles as sites. This offers a quick solution to achieving quick deployment, helping eliminate coverage holes and offload network traffic.

In December 2019, China Telecom Shenzhen completed the deployment and verification of the first 5G Book RRU. 4T4R 5G Book RRUs were used in the project.

After the recent 5G Book RRU deployment, tests show showed that the downlink speed exceeds 1.2Gbps on commercial mobile devices (Mate30 Pro) when the network spectrum is 100 MHz. With Book RRU deployment, coverage holes 150 to 200 m away from streets are eliminated and indoor in-depth coverage of low-rise buildings standing 50 m to 100 m above the ground is achieved.

This places the operator in a unique position to meet the capacity requirements in value hotspots in Shenzhen, such as school campuses, office buildings, business districts, and scenic parks. Book RRUs supplement macro base stations with in-depth coverage and hotspot capacity absorption. This improves user experience and releases suppressed traffic while also increasing ROI.

Shenzhen Telecom is the pioneer of digital construction. Under the overall construction plan of the new infrastructure construction China Telecom Shenzhen will continue to collaborate with Huawei to complete quick 3D networking based on 5G standalone (SA) technologies through combined deployment of macro, pole, and indoor products, enabling optimal user experience while securing 5G leadership.
Picture Source: Susan Welsh de Grimaldo

Last year, Huawei gave a tour to analysts in Zurich, Switzerland to show their kit on Sunrise's network. This tweet from analyst Kester Mann, shows two examples of Book RRU deployments for Sunrise network in 3.7 GHz spectrum with local coverage up to 200 metres and speeds recorded above 700 Mbps with 9 milliseconds of latency.




With operators have to provide dense coverage to meet the 5G expectations, we won't be surprised to see more products like these in the near future.

Related Posts: