Friday, 21 January 2022

Telefónica Deutschland Activates Germany's First Open RAN Small Cells with Airspan Networks

O2 / Telefónica is a technological pioneer in the use of Open RAN. Since December 2020, it has successfully integrated four base stations in Landsberg am Lech into its mobile network. At present, they are testing the technology, gaining experience and planning further expansion at other locations once all tests have been successfully completed. 

In an announcement this week, it said that it is the first German mobile network operator to have activated the first mini-radio cells with innovative Open RAN technology (ORAN) in Munich. They are intended to provide all O2 Germany customers with even more capacity and higher bandwidths at busy locations in the future. 

While the press release doesn't mention the vendor, Airspan Networks Tweeted that the ORAN Small Cell is supplied by them

Selected extract from the press release as follows:

With the compact, flexibly deployable latest-generation mini mobile cells, the company is able to increase 5G/4G capacities in the O2 network at high-traffic locations in urban areas faster than before. The mini-radio cells, attached to a building facade on Klenzestraße in Munich's Gärtnerplatz district, supplement the 4G/5G mobile network installed on rooftops in the city center, but do not replace it.

Small Cells directly enhance the network experience for local customers. The new technology, which is not much bigger than a shoebox, provides customers in very close proximity with 4G and bandwidths of up to 100 Mbps. In the near future, O2 / Telefónica will also use the small cells for targeted, selective 5G coverage. Here, too, the focus will primarily be on particularly busy locations in German city centers, such as very busy squares, shopping streets or public transport stops.

In addition to a power supply, the small cells required a connection via fiber optics. In Munich, this is provided by the fiber optic infrastructure of Stadtwerke München and the local telecommunications provider M-net.

In the coming weeks, further installations will follow in Munich's city center: First, two 4G radio cells at Gärtnerplatz and later this year, O2 / Telefónica will also install pure 5G Open RAN mini radio cells ("5G Standalone") for the first time in the area of Kaufinger Straße in the Bavarian capital. In the course of these expansions, it is also conceivable to use existing infrastructures of Stadtwerke München - such as bus stops or power distributors.

Related Posts

Friday, 14 January 2022

Building the telco edge with or without hyperscalers!

Ever wondered how are operators building their Telco Edge Networks? Is it different in Asian countries as compared to the rest of the world? Some of these questions have been answered in STL Partners webinar they hosted last year. The narrative says:

2021 is seeing growth in telco edge, with some operators in the region having already launched their edge offerings in 2020. In parallel, hyperscale cloud providers are growing their cloud business in Asia and will build new data centres in the next 1-2 years. ​

For telcos, they need to best determine how to build their edge and to what extent they should work with hyperscalers. ​

This webinar draws on data from over 150 surveyed telecoms operators to answer key questions, such as:​

  • How are operators in Asia building the edge?​
  • How much of their edge infrastructure will be provided by a hyperscaler?​
  • Which use cases should Asia operators focus on?​

The webinar video is embedded below:

The slides and Q&A can be downloaded from the webinar page here.

STL Partners have a huge archive of webinars, do check it out here.

Related Posts

Friday, 7 January 2022

5G for Defence and Autonomous Military Solutions

Integrated Modular Unmanned Ground Systems (iMUGS) consortium is a 13-party collaboration focused on standardising a European-wide ecosystem for aerial and ground platforms, command, control and communication equipment, sensors, payloads, and algorithms. The parties involved in the iMUGS project are Milrem Robotics, Latvijas Mobilais Telefons (LMT), Talgen Cybersecurity, Safran Electronics & Defense, NEXTER Systems, Krauss-Maffei Wegmann, Diehl Defence, Bittium, Insta DefSec,, dotOcean, GMV Aerospace and Defence, and Royal Military Academy of Belgium.

Within the iMUGS project, the Latvian MNO LMT is conducting a study on the potential use of 5G in autonomous military solutions. Back in September, the future role of 5G in autonomous military solutions was demonstrated by LMT in collaboration with the iMUGS Consortium. 

A press release said:

The demonstration, during which various scenarios were played out in battlefield-like conditions while showcasing specific use cases, took place today, on September 23rd, at the Ādaži military base in Latvia.

This was the second of a total of six demonstrations with the aim of showcasing the results of the iMUGS (Integrated Modular Unmanned Ground System) project – one of Europe’s leading defence industry development projects. The demonstration was organised by LMT, one of the members of the iMUGS consortium, with the support of the Latvian National Armed Forces and the project coordinator Milrem Robotics.

During the demonstration, the troops played out close-to-reality military scenarios in operational environments and relevant climatic conditions. Milrem Robotics’ unmanned ground vehicle THeMIS, was used, along with a number of other cutting-edge military technologies, such as:

  • LMT’s battle Information Management System for displaying the data of the payloads and as a command system for scenario execution
  • LMT’s Intelligence Surveillance Reconnaissance (IRS) system for performing aggressive fire detection and source recognition
  • The ISR system ‘Skudra’ for performing the signal intelligence mission
  • A highly protected wheeled vehicle DINGO 2 as a command post from which the mission was led

Alternative communication networks were used by the troop and an unmanned ground vehicle, in scenarios that included switching from a tactical network, provided by Bittium in collaboration with LMT, to 4G and 5G networks.

Some videos shared by LMT are embedded below:

At the 5G Techritory 2021, Armands Meirāns, Innovation Leader for Defence & Public Safety at LMT gave a presentation on 5G for Defense, as showcased by iMUGS Consortium. His talk is embedded below:

Related Posts:

Thursday, 30 December 2021

Top 5 Posts for 2021

Here are the top 5 posts on this blog this year:

1. Three UK's Gigabit 5G Poles Explained, June 2021

2. Small Cells World Summit Open RAN Webinar, February 2021

3. Open RAN (O-RAN) RRU (O-RU) and DU (O-DU) Design, February 2021

4. Multi-sectorised sites and Small Cells help O2 UK handle Capacity in Busy Areas, October 2021

5. Vodafone UK's 5G Infrastructure, June 2021

The following blog posts were in the top 5 most popular posts but were posted before 2021:

A. Passive and Active Infrastructure Sharing, May 2020

B. Temporary masts for festivals, events, etc., June 2017

Related Posts:

Friday, 24 December 2021

Nokia back in 5G Game and Vying for Open RAN & 6G Success

Nokia announced their 5G progress at Global Analyst Forum 2021. In a blog post, Tommi Uitto, President of Mobile Networks at Nokia wrote:

“We bet on the right horse choosing Nokia” a customer shared his feedback in a recent meeting after my update on Nokia’s 5G portfolio. We’ve received similar recognition from other customers too: “Congratulations on the catch-up in 5G,” “We of course monitor our customers’ experience and in Nokia-supplied networks it has been excellent,” “Nokia is back in 5G.”

The new 5G portfolio we’ve launched this year continues our promise to deliver and further improve the performance of our networks:

  • We’ve launched our new AirScale radios, including the industry’s lightest high-power, 400MHz 32TRX Massive MIMO. These radios contribute to our 50 percent reduction in power consumption of Massive MIMO radios from 2019 to 2023.
  • Our AirScale baseband is the industry benchmark for flexibility and capacity. It also comes with significantly improved energy efficiency, reducing the baseband power consumption by up to 75 percent. This also contributes to our commitment to halve base station power consumption by 2023.
  • We’re on track to power our full portfolio with latest ReefShark System-on-Chips by the end of 2022.
  • And this year, we brought together our software to a common development trunk, meaning updates to software from 2G to 5G in a single release, bringing our customers the speed and quality they need.

Where we are now is the result of hard, focused execution on our strategic priority to build 5G technology leadership and improve our portfolio competitiveness over the past three years. Coupled with industry-leading SON and network management, as well as digitalized services boosting the speed and quality of deployments, we have a good racehorse now.

Here is a short video from Tommi:

One of the other interesting area that he covered was on Open RAN, or O-RAN as Nokia prefers to use  it. Quoting from the blog post:

Preparing for the future opportunities starts now. Undoubtedly, one key focus area continues to be Open RAN. Nokia is the leading contributor in the O-RAN Alliance and our new AirScale portfolio is already O-RAN ready, supporting our efforts to develop cloud-based, open approaches to building networks. This is all happening in tight cooperation with our customers like NTT Docomo, or Deutsche Telecom with whom we just announced opening a new open lab "i14y" to accelerate network disaggregation and Open RAN. There are many steps to build the O-RAN ecosystem, and we expect this to develop over the coming years but would not expect real commercial deployments before 2023 (perhaps earlier for some trials).

And of course, no discussion is complete nowadays without mentioning 6G:

Network efficiency and optimization utilizing 4G/5G slicing, AI/ML and continuously improving energy efficiency are also key focus areas as we continue to enhance our offering, on the runway to 5G Advanced and ultimately 6G towards the end of the decade. Although it’s early stages on the 6G journey, we envision it to bring massively more capacity, adaptive AI interfaces and deep learning techniques. But when the time of 6G comes, we should not assume we’ll get to start from a “clean slate”. Our customers will want to ensure a seamless evolution of architectures, chipsets, software and 5G/6G platforms. It’s going to be an exciting evolution from 5G to 6G.

The slides from the Analyst Forum is available here.

Matthew Baker, Head of Radio Physical Layer and Co-existence Standardisation at Nokia recently spoke about Nokia's vision of 5G-Advanced. Here is his talk:

Related Posts

Friday, 17 December 2021

Demos from Ericsson's Radio Tech Day 2021

Ericsson's Radio Tech Day is a cyclical meeting intended for the telecommunications industry and technical staff of operators in Poland. Engineers share projects, describe best practices and learn from each other's experience. During the conference, the latest solutions in the field of radio and core technology, both in the field of software and hardware, as well as the achievements of start-ups cooperating with the company, are presented.

The following video is from the recent event held last month:

Related Posts

Friday, 10 December 2021

Telefonica on the Impact of 5G so far

Enrique Blanco, Global CTIO, Telefónica presented a Keynote at Telecoms Europe 5G 2021 virtual event on 9 Nov 2021. The title of his presentation was What’s the impact of 5G so far? and it discussed how the unprecedented speed is just the start of how 5G is changing the face of connectivity. What has been the impact so far on how people live, work, and play, all over the world? 

The video of his talk is embedded below.

Related Posts:

Monday, 29 November 2021

Huawei MetaAAU Promises Improvement in 5G Network Performance and Energy Efficiency

Huawei's latest Active Antenna Unit, MetaAAU is billed as having loads of improvement and potential. A sponsored article on Light Reading says:

Speaking at the recent Mobile Broadband Forum event in Dubai, Yang Chaobin, president of Huawei Wireless Solution, flagged numerous technology innovations and advances that take the traditional AAU (active antenna unit) found in Massive MIMO onto another level.

MetaAAU, developed by Huawei, incorporates ELAA (extreme large antenna array) technology supporting 384 antenna elements. It’s double the number of a traditional AAU.

“By introducing 384 antennas in the AAU, coverage can be improved by 3dB on both the downlink and the uplink, and the user experience can also be improved by 30%,” said Chaobin, “Energy savings of 30% can also be achieved.”

The Official Huawei press release points out: 

Released in October this year, Huawei's 64T64R MetaAAU is the ideal solution to improve both network performance and energy efficiency using innovative hardware and software. For hardware, MetaAAU introduces the extremely large antenna array (ELAA) which enables 384 antenna elements, double that of a conventional AAU (192). ELAA is combined with ultra-light integrated array and signal direct injection feeding (SDIF) to improve both coverage and integration. For software, MetaAAU utilizes the Adaptive High Resolution (AHR) Turbo algorithm to enable precise, dynamic, and targeted beamforming, significantly improving user experience and cell capacity. This hardware/software combo marks a new breakthrough in Massive MIMO coverage and energy efficiency.

In comparison with conventional 64T64R AAU and 32T32R AAU, MetaAAU improves coverage by 3 dB and 6 dB and user experience metrics by 30% and 60%, respectively. For example, in one of its flagship projects — 5G Capital that brings 5G to every corner of Beijing — China Unicom Beijing is using MetaAAU to add 30% in both uplink and downlink coverage along with 25% better experience among cell edge users.

MetaAAU is also a powerful energy-saving tool. It allows base stations to achieve the same level of coverage for cell edge users but with a lower transmit power, reducing energy consumption by approximately 30% over conventional AAUs. This has also been tested in the 5G Capital project.

With its advantages in energy efficiency and coverage, MetaAAU is slated for success. Going green is now a global objective — for example, 26 CEOs of European ICT companies have committed to combat climate change with the European Green Digital Coalition (EGDC). At the same time, 5G network coverage requirements will only continue to grow, rolling out 5G in rural and urban, outdoor and indoor contexts. Leading next-gen ICTs will be key in delivering on both demands; and Huawei's MetaAAU stands to be part of the innovation portfolio.

Going back to the Light Reading article:

If traditional materials found in antenna dipoles were applied to ELAA, for example, the weight would drastically increase, making it more difficult and expensive to install on cell sites.

Moreover, without miniaturized filters, ELAA dimensions necessarily become much bulkier compared with traditional massive MIMO antenna. Cell-site space is already constrained and operators don’t want to go through the lengthy process of gaining permission to occupy more tower space, which, in turn, increases maintenance costs.

Another challenge is that antenna elements in a traditional RF feeding network architecture are normally connected by cables, which are an inefficient way to transfer signals. If the antenna array doubles to 384 elements, the length of cable – along with the extent of inefficiencies – increases.

Through a series of hardware innovations, however, MetaAAU makes the transition to ELAA feasible and attractive. Using ultra-lite metamaterials, MetaAAU is around the same weight as the original 64T64R massive MIMO AAU. Adoption of Huawei’s compact wave filter also means MetaAAU dimensions do not require more space.

To address hardware energy inefficiencies, Huawei has adopted SDIF (signal direct injection feeding) technology. SDIF replaces cables with a more energy-efficient metal-type structure.

Aside from hardware innovation, MetaAAU introduces an adaptive high-resolution beamforming algorithm, dubbed AHR (Adaptive High Resolution) Turbo. It has various features, which, when combined, not only reduces wasted radiation energy but also cuts down on ‘noise’ that can degrade network performance.

Among the benefits of AHR Turbo is that it enables MetaAAU to generate extremely narrow beams that can precisely latch onto user equipment, as well as boost air-interface efficiencies by allowing beams to dynamically adapt to radio channel

Here is an official video of MetaAAU

Mobile World Live also has an infographic, which is the source for the image on the top. It's available here.

Related Posts

Monday, 15 November 2021

Will Distributed FD-MIMO be next big MIMO Enhancement?

We have looked at MIMO quite a few times in this blog. Back in February we looked at some of the advancements that Samsung and Ericsson had been showing here.

Last year, in a blog post, Samsung talked about Distributed Full Dimension MIMO (FD-MIMO). The key points were:

Around that time, the concept of Massive MIMO was proposed in academic papers. These papers proposed the idea of making the signal dimension at the base station much bigger by using a massive number of antennas such that all inter and intra-cell interference asymptotically go to zero. MU-MIMO performance would be improved significantly with a much lower interference level, therefore leading to capacity gain. It looked promising, but no one knew how to bring it to reality, since arranging 10s or 100s of antenna elements in the conventional way (i.e., in the horizontal plane) would lead to a base station that is longer than a bus, so obviously it was not going to work in a real deployment.  

An important breakthrough came when engineers at Samsung noticed that a concept called Active Antenna Systems (AAS), could be exploited to organize 64 or 128 antennas into a 2D active antenna array that is similar in size with a conventional 4-TX system as shown in the middle portion of Figure 1. Such a system is called a Full Dimension MIMO (FD-MIMO) system. Initial evaluation of the FD-MIMO system coupled with high-order MU-MIMO showed a capacity gain by a factor of 3-4 times for a 64 or 128-TX FD-MIMO compared to a 2-TX LTE system, as was summarized in a 2012 Globecom paper , “Fulfilling the promise of massive MIMO with 2D active antenna array”, and later in a 2013 IEEE magazine paper , “Full-dimension MIMO (FD-MIMO) for next generation cellular technology”. 

Samsung has been actively leading the FD-MIMO standardization process in 3GPP from the beginning, including the 3D channel model study in 2012 that paved the way for subsequent system design, the 4G LTE version of elevation beamforming and the FD-MIMO work from 2014, and more recently the 5G NR-MIMO version of FD-MIMO. Samsung has also been a leader in prototyping and testing the feasibility of the technology and was the first to demonstrate an FD-MIMO system supporting 12 simultaneous MU-MIMO users achieving a record aggregate capacity of > 20 bps/Hz in early 2015. These feasibility study result was later published in a 2017 IEEE JSAC paper , “Full Dimension MIMO (FD-MIMO): demonstrating commercial feasibility”.

Initial system level simulations show that the D-FD-MIMO system achieves up to 2 times cell average throughput gain compared to the FD-MIMO system, lifting both cell capacity as well as average user throughput. Such a cellular system can be flexibly deployed to “blanket” a given geographical area and provide better service for both outdoor and indoor users. 

We have developed a hardware prototype and performed field test to verify the feasibility and the performance gain of the D-FD-MIMO system. In the field test, 3 distributed LEGO MIMO RFUs and 7 UE emulators were used. When the number of active RFUs increased from one to three, the overall throughput improved by about 4 times.

A significant amount of work needs to be done before we can accurately quantify the benefits of the D-FD-MIMO technology, but these initial results are certainly promising and show a great potential for this new breakthrough of the MIMO technology.

Back in 2017, Samsung researchers also wrote a paper on this topic, Distributed FD-MIMO: Cellular Evolution for 5G and Beyond, which is available on arXiv here. Quoting from the paper:

Distributed Full Dimension MIMO (D-FD-MIMO) is an evolution of FD-MIMO. A D-FD-MIMO network assumes a cellular structure, where a cell is served by one BS and each BS is connected with a large number of antenna elements, of which individual elements are spatially distributed in the cell. One or more antenna elements are equipped with a digital port, and the signals transmitted and received from all the antenna elements within one cell are jointly processed to perform high order MU-MIMO operation.

Such a cellular system can be deployed outdoors in a city-wide area to provide service to both outdoor and indoor users. It can also be deployed inside the building to serve indoor users only. It is also suitable for providing service in a highly populated area, such as stadiums, shopping centers and airports, where a large number of the users are densely located.

Concepts relating to D-FD-MIMO includes distributed massive MIMO, CoMP (a.k.a. network MIMO) and distributed antenna systems (DAS). Distributed massive MIMO treats the entire network as one cell, featuring an enormous number of access points distributed over a large area, jointly serving all the users. pCell by Artemis can be seen as an implementation of the distributed massive MIMO albeit with a smaller scale in terms of the number of antennas. CoMP relies on the coordination among a few transmission points from the same or different sites to enhance User Equipment (UE) experience at the cell edge. DAS is initially proposed to improve coverage in an indoor cellular communication system, and is sometimes adopted in outdoor scenarios as well. One configuration for outdoor deployment is to have a few antenna arrays distributed throughout the cell to perform MIMO operations. Another DAS configuration deploys a number of individual antenna elements in a distributed manner in each cell of the network, which is similar to the D-FD-MIMO setting. Different from our system-level simulation approach, the analysis theoretically derives the asymptotic sum capacity when the numbers of UE and antennas in each cell both approach infinity with their ratio fixed, and assuming perfect uplink power control.

You can get the PDF of the paper here.

We have written about the Cell-Free Massive MIMO here and here. One of the realizations of D-FD-MIMO is as shown in Ericsson Radio Stripes. 

Researchers on this topic may also be interested in watching Wireless Future Podcast episode 13 on Distributed and Cell-Free Massive MIMO (embedded below). The description says:

In this episode, Erik G. Larsson and Emil Björnson discuss how one can create cell-free networks consisting of distributed massive MIMO arrays. The vision is that each user will be surrounded by small access points that cooperate to provide uniformly high service quality. The conversation covers the key benefits, how the network architecture can be evolved to support the new technology, and what the main research challenges are.

The description also contains some links and the discussion is also interesting to follow. You can jump on to the video directly here.

Related Posts:

Friday, 5 November 2021

Deutsche Telekom Launches Indoor Booster 5G Repeater

On his LinkedIn post, Dr. Alex Jinsung Choi, Deutsche Telekom Senior Vice President, Head of Strategy & Technology Innovation and COO of O-RAN Alliance announced the launch of Telekom Deutschland GmbH's Indoor Booster 5G in Bavaria. The post said:

This small low-power repeater brings 5G into offices and homes that did not have sufficient indoor coverage of mobile networks before. It enables customers to experience best streaming, gaming, education services, home office and video conferences with 5G indoors.

I am proud to announce that this new product is result of the cooperation of Deutsche Telekom with our strategic partner SK Telecom. SKT developed and launched 5G repeaters in 2019. In 2020, DT and SKT colleagues trialed a customized 5G repeater in a customer test in Germany which was starting point for the successful launch this year.

Furthermore, the Indoor Booster 5G is the first product of Techmaker GmbH, the tech joint venture of SK Telecom and Deutsche Telekom. I would like to thank all the many colleagues in Techmaker, SK Telecom and Deutsche Telekom who made the project a success!

We looked at SK Telecom's In-building 5G NR Repeaters couple of years back here.

The website explains the working of the booster as can be seen in the picture on the top. All information is in German and is translated using Google translate below: 

The 5G signal is picked up by an antenna on the outside and routed inwards by cable to a so-called booster. This only requires a 230V connection. This results in faster cell phone reception even in remote rooms with stable walls. You can continue to use the Indoor Booster 5G with your existing mobile phone contract.

The Indoor Booster 5G consists of an outside antenna and a booster inside. You should be authorized to have an antenna installed on your building and to grant access.

Couple of FAQ's have interesting info as well:

Why can you only rent the Indoor Booster 5G and not buy it?

Since the indoor booster reproduces the cellular signal, Telekom is the operator of the device and cannot transfer ownership of it to the customer.

Why do I have to commission the installation service?

Since the Indoor Booster reproduces the cellular signal, Telekom is responsible for the operation of the device and must ensure that the radio signal does not interfere with the cellular network. At the installation appointment, you will also be advised where the external antenna is best placed in order to achieve the best possible improvement in performance.

If you own one of these, we would love to hear from you about your experience.

Related Posts: