Friday, 26 February 2021

Samsung and Ericsson Talks Massive MIMO


Massive MIMO is a fascinating topic. First is that there is no end to learning about it and secondly, the more information I put out, the more hunger people have about it. In the recent months there have been quite a few product announcements on the topic so we thought, why not do a blog post on it. 

Before we start, why not look at Massive MIMO and Beamforming. Mpirical has a short and sweet video explaining it. It is embedded below.

The video discusses four main topic areas: Beamforming vs Spatial Multiplexing, Beam Creation and Steering, Massive MIMO and finally MIMO Panel Antennas.

Now that we have refreshed the concept, let's look at what the product announcements were. 

The first was this blog post by Ericsson on 'How to build high-performing Massive MIMO systems' where they talked about how Ericsson has mastered the Art and Science of Massive MIMO to both unleash the full capacity benefits and extend the coverage of the new 5G mid-band spectrum - bringing outstanding user experience today, and setting the stage for the advanced applications of tomorrow.

The post starts with the 101 of radio physics, then talks about “Outsmarting” physics with Massive MIMO and Beamforming and finally it talks about the secret sauce in Ericsson AAS (Advanced Antenna Systems). The tweet below shows a practical Massive MIMO antenna and how it works.

In addition, Ericsson announced an "ultra-light Massive MIMO radios and RAN Compute baseband solutions." You can read all about it on their Massive MIMO page here and in the Tweet below.

The second was a press release by Samsung announcing Massive MIMO Roadmap in New Whitepaper, which is available here.

The following video shows world's 1st commercial 5G Massive MIMO Radio by Samsung

As the deployments start ramping up, we will see more product announcements on these. The main challenge that needs solving is the huge amount of power consumption. Probably a year or two before we see a breakthrough.

Related Posts:

Friday, 19 February 2021

Open RAN (O-RAN) RRU (O-RU) and DU (O-DU) Design


We often publish Open RAN related information on this blog. Now, Telef├│nica has just published a whitepaper providing an overview of the main technology elements that it is developing in collaboration with selected partners in the Open RAN ecosystem. 

It describes the architectural elements, design criteria, technology choices and key chipsets employed to build a complete portfolio of radio units and baseband equipment capable of a full 4G/5G RAN rollout in any market of interest. More details here and the PDF is here.

The following is a selective abstract from the paper:

Sites within Telef├│nica footprint can be broadly classified into four types, from low/medium capacity 4G to high/dense capacity 4G+5G, as illustrated in Figure 1. Each of those types correspond to a particular arrangement of DUs and RRUs whose design and dimensioning represents a key milestone that must be achieved prior to any further development. Representative frequency bands are just shown for illustration purposes, as well the number of cells that can be typically found in each site type.

3GPP defined a new architectural model in Release 15, where the gNB is logically split into three entities denoted as CU, DU and RRU. The RAN functions that correspond to each of the three entities are determined by the so-called split points. After a thorough analysis of the potential split options, 3GPP decided to focus on just two split points: so-called split 2 and split 7, although, only the former one was finally standardized. The resulting partitioning of network functions is shown in Figure 2.

The CU (Centralized Unit) hosts the RAN functions above split 2; the DU (Distributed Unit) runs those below split 2 and above split 7; and the RRU hosts the functions below split 7 as well as all the RF processing.

The O-RAN Alliance further specified a multi-vendor fronthaul interface between the RRU and DU, by introducing a specific category of split 7 called split 7-2x, whose control, data, management, and synchronization planes are perfectly defined. The midhaul interface between CU and DU is also specified by 3GPP and further upgraded by the O-RAN Alliance to work in multivendor scenarios.

The CU and DU can be co-located with the RRU (Remote Radio Unit) in purely distributed scenarios. However, the real benefit of the split architecture comes from the possibility to centralize the CU, and sometimes also the DU, in suitable data centers where all RAN functions can be fully virtualized and therefore run on suitable servers.

The infrastructure needed to build a DU is nothing else than a server based on Intel Architecture optimized to run those real-time RAN functions located below split 2, and to connect with the RRUs through a fronthaul interface based on O-RAN split 7-2x. It is the real-time nature of the DU which motivates the need to optimize the servers required to run DU workloads.

The DU hardware includes the chassis platform, mother board, peripheral devices, power supply and cooling devices.

When the DU must be physically located inside a cabinet, the chassis platform must meet significant mechanical restrictions like a given DU depth, maximum operating temperature, or full front access, among others. The mother board contains processing unit, memory, the internal I/O interfaces, and external connection ports. The DU design must also contain suitable expansion ports for hardware acceleration. Other hardware functional components include the hardware and system debugging interfaces, and the board management controller, just to name a few. Figure 3 shows a functional diagram of the DU as designed by Supermicro.

In the example shown above, the Central Processing Unit (CPU) is an Intel Xeon SP system that performs the main baseband processing tasks. To make the processing more efficient, an ASIC based acceleration card, like Intel’s ACC100, can be used to assist with the baseband workload processing. The Intel-based network cards (NICs) with Time Sync capabilities can be used for both fronthaul and midhaul interfaces, with suitable clock circuits that provide the unit with the clock signals required by digital processing tasks. PCI-e slots are standard expansion slots for additional peripheral and auxiliary cards. Other essential components not shown in the figure are randomaccess memory (RAM) for temporary storage of data, flash memory for codes and logs, and hard disk devices for persistent storage of data even when the unit is powered-off.

An Open RAN Remote Radio Unit (RRU) is used to convert radio signals sent to and from the antenna into a digital baseband signal, which can be connected to the DU over the O-RAN split 7-2x fronthaul interface.

For illustration, the reference architecture of an Open RAN RRU from Gigatera Communications is shown in Figure 7. It shows the functional high-level diagram of the RRU containing the following components:

  • Synchronization and Fronthaul Transport Functional Block
  • Lower PHY Layer Baseband Processing Functional Block
  • Digital Front End (DFE) Functional Block
  • RF Front End (RFFE) Functional Block

For more details, check out the whitepaper here.

Related Posts:

Friday, 12 February 2021

Small Cells World Summit Open RAN Webinar


Small Cell Forum hosted an open industry Small Cells World Summit webinar, on December 9, 2020, on the topic of Small Cell Open RAN. It included panelists from companies across the global Small Cell eco-system - Qualcomm Technologies, Inc., Radisys, Reliance Jio and Picocom. The panel shared insight into SCF’s FAPI and Option 6 open interfaces and their applications within 3GPP and O-RAN frameworks.

The video of the webinar as follows:

Agenda and speakers:

  1. Julius Robson, Chief Strategy Officer, SCF - Small Cell Open RAN specifications:  5G FAPI and Option 6 
  2. Andrei Radulescu, Senior Staff Engineer, Qualcomm - FAPI: MAC/PHY interface for Small and Macro Cells
  3. Ganesh Shenbagaraman, Head of Integrated Products and Ecosystems, Radisys  - Network FAPI deployment scenarios and O-RAN alignment
  4. Ravi Sinha, Director, TechDev and Solutions (4G, 5G & MEC Solutions), Reliance Jio - Building the small cell  ecosystem around FAPI components and Option6 interfaces
  5. Vicky Messer, Director Product Management, Picocom - nFAPI test support
  6. Summary, next steps and Q&A

Related Posts:

Friday, 5 February 2021

SK Telecom’s 5G MEC Status and Plan

 

Back in December, at '5G Connected Edge Cloud for Industry 4.0 Transformation – 2020 Spotlight Series', Kang-Won Lee, Vice President, 5GX Cloud Labs, SK Telecom gave a talk on SK Telecom’s 5G MEC Status and Plan. 

It was interesting to see that while the industry has changed the definition of MEC to Multi-access Edge Computing, SKT still refers to it as Mobile Edge Cloud. As SKT has now crossed over 10 million 5G subscribers, they have noticed a lot of demand for Edge compute capability. While there is a demand, enterprises, factories, buildings, etc. are not interested in managing their own infrastructure. They would rather somebody else provides the services. This is where SK Telecom sees new business opportunities in the future. Along with the high throughput, high capacity and low latency, security and privacy is very important as well. 

As the services move to edge, there is more predictibility on QoE and the latecny can be reduced to as low as 1ms which is a huge benefit to critical applications. While they are not there yet, they are moving towards that goal. There is also a huge opportunity for public cloud providers here.

SKT has 2 main deployment models as can be seen. The public edge where they have data centres distributed throughout the country and can hence provide MEC services to 5G users nationwide. On the other hand, On-site edge is useful for providing private MEC services to enterprise and government users. Ideal for smart factories, smart hospitals, offices, etc. In both cases, SKT are open to collaborate with the users, communities, open source, big companies, etc.


Finally, SKT MEC Architecture can be seen in the picture above. The 5G network and 5G-MEC gateway can be seen which is connected with the compute and storage resources which are in turn connected to SKT tech assets or other operator platform or public cloud platform as required. The video provides more details including the SKT MEC Architecture details.

The slides are available to the registered users here and the talk is embedded as follows:

Related Posts:

Friday, 29 January 2021

Samsung Link Indoor Solutions

Late last year, Samsung launched the Full Suite of 5G Indoor Products aimed at improving 5G connectivity indoors. As we move to higher frequencies for 5G, especially mmWave, alternative solutions will definitely be required to provide higher data rates. 

As can be seen in the picture above, there are three different solutions for different scenarios. The brochure here and this website here provides details but I have highlighted the relevant information below:

Link Cell is a compact indoor small cell that offers robust, ubiquitous in-building 5G mmWave coverage to deliver the high bandwidth, low latency and fast throughput needs for these businesses and public venues. The indoor solution can connect a large number of indoor users to data applications where signals from the outside 5G mmWave networks are hard to reach, enhancing productivity and providing a premium business experience. For enterprises that require dedicated connectivity and additional security needs the Link Cell can also serve as the foundation for a 5G private network. By combining a private 5G Core with Link Cells, an enterprise can have a secure, ultra-reliable, high-speed, low-latency 5G network that can accelerate their automation and digitization efforts.

To meet indoor coverage demands, particularly where capacity expansion is required or anticipated in the near future, Samsung offers a 5G Active DAS (Distributed Antenna System) solution called the Link HubPro. This system is especially useful in large buildings with extensive IT infrastructure. The solution includes two main components: a Radio Hub and Indoor Radio, and supports more diverse spectrums including, low-band and mid-band. With this simple architecture, single Radio Hub will allow a mobile operator to connect multiple radios and making multiple radios work as a single cell to build wide 5G indoor coverage without interference. 

Samsung Link Hub acts as a radio to connecting passive antennas supporting both LTE and 5G. If a building already has an existing passive DAS system, service providers can easily upgrade their indoor network to provide 5G service and reuse legacy cabling to save both time and costs. The Link Hub will act as a bridge between the 5G baseband and antennas by converting data traffic to radio signals, and vice versa, making 5G data traffic possible. The Link Hub can be managed remotely by an operator’s network management system.

The video below explains the solution in detail:

Here is another video that explains the indoor small cell, Samsung Link Cell

As a final thing, it should be pointed out that Samsung’s Link Cell features the Qualcomm 5G RAN platform, which builds on the collaboration between Qualcomm Technologies, Inc. and Samsung. 

Related Posts:

Friday, 22 January 2021

NTT Docomo's 5G Network is based on 'Open RAN' Principles

I have detailed many different details from NTT Docomo over the years as they are not just one of the few innovative operators but are also very happy to share lots of interesting details. Their RAN Infrastructure post was posted in November but already reached top 5 posts on this blog. 

In a recent interview with Telecom TV, Sadayuki Abeta, Vice President & General Manager of the Radio Access Network Development Department at NTT DOCOMO, talked about the Japanese operator’s experience with Open RAN deployments, starting with its multi-vendor 4G network and now with its 5G rollouts. His talk, embedded below, points out that even though they have not yet adopted vRAN, they consider their network to be Open RAN based on the open Interface principles. 

Back in September, Docomo had couple of announcements about the 5G Base Stations based on O-RAN specifications.

The first announcement was about Docomo and NEC announcing that they have expanded multi-vendor interoperability by interconnecting a new 5G base station baseband unit (5G-CU/DU), developed by NEC and Samsung Electronics and compliant with O-RAN Alliance specifications, with 5G base station remote radio units (5G-RUs) of other vendors on DOCOMO's commercial network.

Expanding multi-vendor interoperability based on O-RAN open interface specifications will enable the most appropriate base stations to be used depending on deployment scenarios and taking advantage of specific vendor and equipment characteristics. This will drive the rapid and flexible development of 5G service areas.

The new 5G base station baseband unit from NEC realizes multi-vendor interoperability and is the result of a partnership between NEC and Samsung. It is interoperable with all existing vendors' 5G base station remote units in DOCOMO's network owing to its adoption of O-RAN open fronthaul specifications; it is also compatible with all existing 4G base stations in DOCOMO's network thanks to its adoption of O-RAN open X2 specifications.

Multi-vendor interoperability using O-RAN open fronthaul specifications was also confirmed for NEC's macro-cell 5G-RU, which provides wide area coverage, and for NEC's fronthaul multiplexer (5G-FHM), which copies and combines the fronthaul signals to and from multiple 5G-RUs to form a single area; both are new 5G base station equipment offerings.

During their collaboration, DOCOMO selected the test items, executed the multi-vendor interoperability tests and analyzed the results; NEC and Samsung Electronics supplied the 5G base station equipment and analyzed the test results.

The second announcement was about DOCOMO, Fujitsu and NEC achieving what they believe to be the world's first carrier aggregation using 5G frequency bands in a multi-vendor radio access network (RAN) based on O-RAN specs.

Carrier aggregation was achieved using the 3.7GHz and 4.5GHz bands designated for 5G networks. In addition to this dual connectivity achieved by bundling LTE bands, downlink speeds of 4.2 Gbps will be achievable, enabling ultra-fast data transmission. DOCOMO already provides commercial 5G services in Japan through a multi-vendor RAN that connects baseband units and remote radio units manufactured by Fujitsu and NEC based on O-RAN's open fronthaul specifications. The same system configuration was used to achieve this 5G carrier aggregation.

Mr. Nozomu Watanabe, Senior Executive, NEC Corporation and Mr. Sadayuki Abeta, VP & GM, Radio Access Network Development Department, NTT DOCOMO explained their Open RAN vision and approach in a Telecom TV interview baback in November which is embedded below.

It's just a matter of time before we see more of these interoperability announcements, not just for 4G & 5G but also for 2G & 3G.

Related Posts

Thursday, 14 January 2021

ITU Releases 'The Last-Mile Internet Connectivity Solutions Guide'



Despite the meteoric growth of the Internet and broadband connectivity, 3.7 billion people remain offline and are excluded from the direct benefits of the global digital economy, says a new publication just released by the International Telecommunication Union, The Last-Mile Internet Connectivity Solutions Guide: Sustainable connectivity options for unconnected sites. The press release said:

While there are multiple constraints on Internet access and use, the Solutions Guide addresses those posed by gaps in infrastructure coverage and service affordability. The low return on investment in network deployment in sparsely populated areas means that, in many developing countries, connectivity is largely limited to urban areas, leaving rural and remote areas totally cut off. 

Moreover, even when telecommunication networks are present, access to the Internet may be limited by prohibitively high prices, and lower-income individuals and families may be priced out of connectivity. 

Offline populations are particularly concentrated in least developed countries (LDCs), where according to latest ITU data, only 19 per cent of individuals were online in 2019. Regionally, in Africa and Asia-Pacific, less than half the population is online: 29 and 45 per cent respectively.

Written from the perspective of localities and users in areas without Internet access, the Solutions Guide contains tools, service interventions and policy solutions that can help policy-makers to select and customize appropriate solutions to extend Internet access to their localities, taking into account their unique characteristics. 

The guide is divided into four main steps that outline the planning and policy development phases of interventions to encourage infrastructure  deployments:

  1. Identify digitally unconnected and underserved regions;
  2. Review options from existing solutions;
  3. Select sustainable solutions that best fit the given situation;
  4. Implement interventions to extend sustainable connectivity service. 

The guide draws on lessons learned by governments, service providers, technology vendors, international organizations, multilateral development banks, bilateral donors, academia and others over the past 30 years. It is intended to be a living, active guide that is continuously updated and revised. 

In addition to the Solutions Guide, ITU is developing a range of resources to help Member States address last-mile connectivity challenges, including a database of case studies and interactive last-mile connectivity diagnostic and decision-making tools. It also offers capacity-building services and assistance on design, planning and implementation, including identifying unconnected areas and providing expert guidance on the selection of sustainable technical, financial and regulatory solutions. 

The PDF is available here. You can find the database and other information here.

Related Posts:

Thursday, 7 January 2021

TIP Announces Total Site Solution (TSS) for Ultra-Rural Network Deployments

Telecom Infra Project (TIP) and its members have developed a Total Site Solution (TSS), an optimized, lean site configuration specifically adapted to ultra-rural environments. TIP announced the solution back in December. A clear idea can be obtained from the excellent video accompanying the announcement as follows:

The press release says:

Deploying reliable and high-speed networks to ultra-rural communities has long been one of the greatest challenges for the telecoms industry. The combination of lower population densities, lack of existing infrastructure, and availability of local expertise means that expanding networks into these areas has traditionally not been economically viable, leaving significant areas of the world unconnected. To help catalyze the industry to find a solution to this challenge, the Telecom Infra Project (TIP) and its members have developed the Total Site Solution (TSS), an optimized, lean site configuration specifically adapted to ultra-rural environments.

The solution which incorporates a range of essential elements, including low-power RAN equipment, off-grid energy solutions and satellite backhaul links, has been created by a diverse group of technology partners, including vendors and local system integrators, who have built, tested, and validated each of the necessary elements and their interoperability, as well as their ability to work with TIM Brasil’s core network.

The first TSS use case targets greenfield deployments to off-grid populations of less than 5,000 people, looking to address mid to low amounts of data consumption, through a “Town Center Model” for 4G coverage and supporting VoLTE for voice service.

For the use case, TIM Brasil created the technical and business use case requirements in a Pilot Program. Initial lab trials were then conducted at TIP’s Community Lab in North Los Angeles, California, in collaboration with vendors BaiCells (RAN); Morningstar (power systems); and Gilat (satellite backhaul links) to evaluate the interoperability of the elements. After the validation in the labs, local system integrator partners WLLCTEL and Zurich/Amerinode created cost-optimized site designs tailored for ultra-rural environments. Two test sites were subsequently built to prove the design and to simplify the construction process of the sites, after which TIM Brasil conducted a field trial to test the effectiveness of the solution in preparation for market trials and commercial deployments.

TSS has now gone through TIP’s Rural Site Configuration PlugFest which has expanded the initial configuration to include additional RAN (Airspan, Parallel Wireless, VNL) and VSAT backhaul equipment vendors (including ST Engineering iDirect), and validated them against a comprehensive test plan. These proven configurations are now listed on TIP Exchange and PlugFest, making them available to all members for further trials of TSS in other areas of the world.

Next steps for the TSS project include:

  1. Sharing ultra-rural TSS test plans, site installation runbook, and RSC PlugFest summary with TIP community (linked on TSS website)
  2. Working with additional partners globally to launch the proven ultra-rural TSS configuration into networks, bringing more unconnected people online
  3. Working with ecosystem partners across the NaaS Solution Group to apply the proven TSS incubator model to develop additional NaaS use-cases
  4. Market trial with TIM Brasil in the first half of 2021

The TSS sub-site has documents and additional details here.

Related Posts:

Thursday, 24 December 2020

Top 5 Posts for 2020


It's nearly the end of the year so here are the top 5 posts on this blog this year:

1. Passive and Active Infrastructure Sharing - May 2020

2. SuperMicro's 5G Pole-Mounted DU Server Solution - April 2020

3. NTT Docomo's 5G RAN Infrastructure - November 2020

4. Nokia's AirScale indoor Radio (ASiR) Small Cells - July 2020

5. NEC's 5G Antenna-equipped Smart Street Lighting to be Trialled in Tokyo - June 2020


Related Posts:

Thursday, 17 December 2020

5G connectivity and IoT intelligence for Leuven Digital City Pole project

We have seen some interesting lamp posts and poles concept on this blog (see related posts at the end of this post). Now, Nokia announced last week that it is providing industrial-grade, 5G-ready private wireless networking to the Digital City Pole project in Leuven, Belgium. The project paves the way for future citywide 5G connectivity that will stimulate local innovation, drive productivity and create jobs, particularly among small and medium-sized businesses.

Working with the consortium led by TRES, Nokia is demonstrating use cases that leverage IoT intelligence across a new secure city data backbone. In doing so, the project will explore new revenue opportunities based on IoT data and energy marketplaces.

The TRES broader initiative will also see streetlight poles upgraded with energy-efficient LED lighting and electric vehicle charging points. Distributed extensively in urban areas, digital city poles provide an effective platform to host high performance connectivity and sensors as cities seek to introduce ubiquitous smart city services.

The Digital City Pole project is supported by the Flemish Government and the EU Agency for Innovation and Entrepreneurship. Leuven, which was recently awarded European Capital of Innovation 2020, is committed to new technologies to boost sustainable development and it aims to become one of Europe's Labs of the Future through a mission-oriented model that facilitates collaborative innovation.

In addition to Nokia 5G-ready connectivity deployed in partnership with local service provider Citymesh, Nokia will also supply its Gigabit Passive Optical Networks technology for ultra-high-speed connectivity over an end-to-end broadband network.

TRES's website does not have much information but this presentation from last year has some details of this project. The following video explains the concept and shows some real deployment and use case examples 

We will hopefully hear more about the results, etc. next year.

Related Posts: