Showing posts with label Telecom TV. Show all posts
Showing posts with label Telecom TV. Show all posts

Tuesday, 17 September 2024

High-Speed FWA Using mmWave With the Help of Li-Fi

On a regular basis I keep reading about how Fixed Wireless Access (FWA) continues to gain ground at the expense of cable operators, especially in the USA (see articles by Ookla, OpenSignal). One of the challenges with FWA is the need to (generally) install external antennas, especially when higher frequencies like mmWaves is involved.

One of the approach would be to use transparent antennas that I have explained here. This would be difficult for residential consumers. The other approach, championed by pureLiFi is to use Light Based Communications to let the signal pass from outside to inside. Both these approaches were my wow moments at MWC 2024.

TelecomTV has a nice write-up on the pureLiFi/Solace solution from the conference here. Quoting from that:

This week, pureLiFi announced the LINXC Bridge, a self-installable double limpet that attaches itself to both sides of a window (see picture, above). 

“The idea is to help the signal get through glass,” explained pureLiFi CEO, Alistair Banham. The device transmits an optical version of the incoming radio signal through the glass window so the data can then be distributed to a router or other device once inside the room.

According to Banham, “getting outside signals in” has become ever more difficult as radio technologies have climbed the frequency range and adopted complex encodings, such as orthogonal frequency division multiplexing (OFDM), while the materials used to construct buildings have become less  permeable to radio signals. This is a looming problem, he says, because telcos will increasingly rely on millimetre wave (mmWave) fixed 5G radio links to extend broadband services, especially to those hard-to-reach homes and businesses in remote locations, and mmWave doesn’t like walls or windows.

The pureLiFi LINXC Bridge, developed in partnership with Canadian company Solace Power, is designed to overcome some of those problems. “A top priority is the avoidance of truck roll, so a key attraction for our telco customers is the system’s ease of installation – there’s no requirement to for an outside antenna or hole-boring through the side of the customer’s building, as the LINXC is designed to be self-installed, which eliminates installation costs and shortens the time to market for telco-delivered wireless broadband,” said Banham.

But the real Li-Fi breakthrough came about halfway through 2023 when the IEEE (Institute of Electrical and Electronics Engineers) took the wraps off 802.11bb, the optical variant of the Wi-Fi standard and, as a result, Li-Fi and Wi-Fi should be able to interwork within a customer’s premises. 

“Last year,” Banham explained, “we developed the light antenna so a Wi-Fi network can see it as just another antenna, so now we have full interoperability and that means we can demonstrate a complete ecosystem so that customers can see, touch, feel and understand its benefits.”

Perhaps the biggest benefit, and most attractive niche for Li-Fi, is within so-called radio sensitive environments which, thanks to the interoperability with Wi-Fi,  will enable it to selectively reach and connect things like critical medical equipment, for instance (a large and growing application area).

The new mmWave bridge product isn’t pureLiFi’s only offering –  there’s SkyLite, a “whole-room Li-Fi access point” and the Cube, described as a simple, secure working from home, gaming, streaming and on-the-move connectivity device.  

Banham says the ambition doesn’t stop there, as the company has plans to have Li-Fi “augment and extend other wireless and wireless technologies, ushering in a new era of bandwidth, speed and reliable communications."

The press release from Solace Power also includes the video of the solution and is available here.

Related Posts

Friday, 22 January 2021

NTT Docomo's 5G Network is based on 'Open RAN' Principles

I have detailed many different details from NTT Docomo over the years as they are not just one of the few innovative operators but are also very happy to share lots of interesting details. Their RAN Infrastructure post was posted in November but already reached top 5 posts on this blog. 

In a recent interview with Telecom TV, Sadayuki Abeta, Vice President & General Manager of the Radio Access Network Development Department at NTT DOCOMO, talked about the Japanese operator’s experience with Open RAN deployments, starting with its multi-vendor 4G network and now with its 5G rollouts. His talk, embedded below, points out that even though they have not yet adopted vRAN, they consider their network to be Open RAN based on the open Interface principles. 

Back in September, Docomo had couple of announcements about the 5G Base Stations based on O-RAN specifications.

The first announcement was about Docomo and NEC announcing that they have expanded multi-vendor interoperability by interconnecting a new 5G base station baseband unit (5G-CU/DU), developed by NEC and Samsung Electronics and compliant with O-RAN Alliance specifications, with 5G base station remote radio units (5G-RUs) of other vendors on DOCOMO's commercial network.

Expanding multi-vendor interoperability based on O-RAN open interface specifications will enable the most appropriate base stations to be used depending on deployment scenarios and taking advantage of specific vendor and equipment characteristics. This will drive the rapid and flexible development of 5G service areas.

The new 5G base station baseband unit from NEC realizes multi-vendor interoperability and is the result of a partnership between NEC and Samsung. It is interoperable with all existing vendors' 5G base station remote units in DOCOMO's network owing to its adoption of O-RAN open fronthaul specifications; it is also compatible with all existing 4G base stations in DOCOMO's network thanks to its adoption of O-RAN open X2 specifications.

Multi-vendor interoperability using O-RAN open fronthaul specifications was also confirmed for NEC's macro-cell 5G-RU, which provides wide area coverage, and for NEC's fronthaul multiplexer (5G-FHM), which copies and combines the fronthaul signals to and from multiple 5G-RUs to form a single area; both are new 5G base station equipment offerings.

During their collaboration, DOCOMO selected the test items, executed the multi-vendor interoperability tests and analyzed the results; NEC and Samsung Electronics supplied the 5G base station equipment and analyzed the test results.

The second announcement was about DOCOMO, Fujitsu and NEC achieving what they believe to be the world's first carrier aggregation using 5G frequency bands in a multi-vendor radio access network (RAN) based on O-RAN specs.

Carrier aggregation was achieved using the 3.7GHz and 4.5GHz bands designated for 5G networks. In addition to this dual connectivity achieved by bundling LTE bands, downlink speeds of 4.2 Gbps will be achievable, enabling ultra-fast data transmission. DOCOMO already provides commercial 5G services in Japan through a multi-vendor RAN that connects baseband units and remote radio units manufactured by Fujitsu and NEC based on O-RAN's open fronthaul specifications. The same system configuration was used to achieve this 5G carrier aggregation.

Mr. Nozomu Watanabe, Senior Executive, NEC Corporation and Mr. Sadayuki Abeta, VP & GM, Radio Access Network Development Department, NTT DOCOMO explained their Open RAN vision and approach in a Telecom TV interview baback in November which is embedded below.

It's just a matter of time before we see more of these interoperability announcements, not just for 4G & 5G but also for 2G & 3G.

Related Posts