Showing posts with label Technology MEC. Show all posts
Showing posts with label Technology MEC. Show all posts

Friday, 20 June 2025

Understanding the Internet’s Hidden Infrastructure

Most people experience the Internet as a seamless service, but beneath that simplicity lies a multi-layered infrastructure made up of interconnected networks, routing policies, exchange points, and edge delivery platforms. These are the systems that keep global data flowing — reliably, efficiently, and at scale.

In our recent explainer video, we examine this invisible architecture by following the path of data from users to content providers and back again. The tutorial covers:

  • The hierarchical structure of Internet Service Providers (ISPs) and how they form transit chains by purchasing upstream connectivity
  • The use of Internet Exchange Points (IXPs) for settlement-free peering between networks, including the difference between public and private peering
  • The infrastructure behind Content Delivery Networks (CDNs) and the role of Netflix's Open Connect Appliances (OCAs)
  • The emerging importance of Multi-access Edge Computing (MEC) in localising compute and reducing backbone load

We also touch on real-world examples such as:

  • Swisscom’s temporary standoff with Netflix in 2016, highlighting the commercial tensions in peering agreements
  • The more recent regulatory intervention by ComCom, requiring Swisscom to establish zero-settlement peering with Init7

These cases demonstrate how infrastructure policy, competitive pressure, and traffic engineering come together to shape the performance and openness of the Internet.

Watch the video below to better understand the physical and logical structures that underpin our digital world:

Whether you're in network planning, architecture, or policy, this video offers a concise look at the building blocks that make the Internet work.

You can download the slides from here.

Related Posts

Friday, 11 June 2021

AWS for Public and Private 5G Networks

wrote about AWS Edge being used to power Private Networks and Industry 4.0 back in March. Since then we had this big announcement from DISH and AWS about formation of 'Strategic Collaboration to Reinvent 5G Connectivity and Innovation'.

It talks about how the new US operator, DISH, will leverage AWS infrastructure and services to build a cloud-based, 5G Open Radio Access Network (O-RAN) that delivers consistent, cost-effective performance from core to the edge. 

Netmanias has done an awesome job of explaining how AWS will be used in the Dish network and compares it with the Rakuten Virtualised network. Reproducing the original from them below.


In addition, they have also done a fantastic job of explaining how different operators are planning to use AWS in their Networks. 


You can read more details for each of the operators below:

  • AWS and Verizon Expand 5G Collaboration with Private MEC Solution
  • AWS and Vodafone Business Bring Edge Computing Closer to Organizations in Europe
  • Announcing the first AWS Wavelength Zone in South Korea on SK Telecom (SKT)’s 5G network
  • KDDI To Launch "AWS Wavelength" On December 16, Offering Ultra Low Latency on the 5G Network Edge
  • Singtel and Optus expand 5G ecosystems with AWS for 5G edge computing
  • Telefónica Germany / O2 builds new 5G core network in the cloud
  • DISH and AWS Form Strategic Collaboration to Reinvent 5G Connectivity and Innovation
  • Bell Canada teams up with AWS for edge computing

Let us know what you think about the operator strategy of moving to AWS for something or other.

Related Posts

Friday, 12 March 2021

AWS Edge to Power Private Networks and Industry 4.0

At the ONF 2020 Spotlight Series, '5G Connected Edge Cloud for Industry 4.0 Transformation', Ishwar Parulkar, Chief Technologist, Telco, Amazon Web Services (AWS) gave a keynote presentation on 'How AWS Edge is Powering Industry 4.0'. 

He talked about how AWS Edge is powering the 4th Industrial Revolution by building the connected edge cloud. His talks covers:

  • Edge Developer Expectations
  • AWS Vision of Edge
  • Edge Infrastructure
  • AWS Enabled Private Networks
  • Services for the Connected Edge

The video of the talk is embedded below and the slides are available here.

Back in January, AWS also released a nice whitepaper on 'Next-Generation Mobile Private Networks Powered by AWS'.


This whitepaper introduces the relevant use cases, solutions, and best practices for designing and deploying mobile private networks powered by AWS. Cloud-enabled mobile private networks allow enterprises, governments, and professional organizations to autonomously deploy their own geo-dispersed, secure mobile private networks. These networks cover private facilities while meeting their performance, reliability, availability, security, and scalability requirements. 

It's available to download here.

Related Posts:

Friday, 5 February 2021

SK Telecom’s 5G MEC Status and Plan

 

Back in December, at '5G Connected Edge Cloud for Industry 4.0 Transformation – 2020 Spotlight Series', Kang-Won Lee, Vice President, 5GX Cloud Labs, SK Telecom gave a talk on SK Telecom’s 5G MEC Status and Plan. 

It was interesting to see that while the industry has changed the definition of MEC to Multi-access Edge Computing, SKT still refers to it as Mobile Edge Cloud. As SKT has now crossed over 10 million 5G subscribers, they have noticed a lot of demand for Edge compute capability. While there is a demand, enterprises, factories, buildings, etc. are not interested in managing their own infrastructure. They would rather somebody else provides the services. This is where SK Telecom sees new business opportunities in the future. Along with the high throughput, high capacity and low latency, security and privacy is very important as well. 

As the services move to edge, there is more predictibility on QoE and the latecny can be reduced to as low as 1ms which is a huge benefit to critical applications. While they are not there yet, they are moving towards that goal. There is also a huge opportunity for public cloud providers here.

SKT has 2 main deployment models as can be seen. The public edge where they have data centres distributed throughout the country and can hence provide MEC services to 5G users nationwide. On the other hand, On-site edge is useful for providing private MEC services to enterprise and government users. Ideal for smart factories, smart hospitals, offices, etc. In both cases, SKT are open to collaborate with the users, communities, open source, big companies, etc.


Finally, SKT MEC Architecture can be seen in the picture above. The 5G network and 5G-MEC gateway can be seen which is connected with the compute and storage resources which are in turn connected to SKT tech assets or other operator platform or public cloud platform as required. The video provides more details including the SKT MEC Architecture details.

The slides are available to the registered users here and the talk is embedded as follows:

Related Posts:

Wednesday, 24 June 2020

Edge Computing and the Future of Small Cell Networks


Small Cell Forum (SCF) recently published report setting out how edge computing will impact the future of small cell networks, with particular focus on private 4G / 5G cellular networks. A survey of service providers for the paper showed that by 2025 almost 75% new indoor small cell deployments will be co-located with edge and/or private EPC. The paper (SCF 234) is available to download here.

The press release on this stated:

Edge Computing and Small Cell Networks identifies core synergies between edge computing (EC) and small cell networks (SCNs) and highlights how those synergies are present across multiple domains – business, technical, deployment, product and vendor ecosystems.

It describes how the benefits of small cells co-located with edge can be applied to commercial and operational advantage in key industry segments, such as automation and Industry 4.0, worksites, mission critical services, enterprises and public safety. The paper looks in detail at the architectures and deployment considerations for edge and small cells in three premises-based use cases:
  • Fully private cellular networks (PCNs)
  • PCNs that have a roaming relationship with MNO networks
  • PCNS integrated with MNO networks

While small cells and edge computing have significant potential to meet enterprise demand and drive new business models for service providers, best practice needs to be agreed and adopted, and technical barriers/gaps addressed to optimize that potential for both enterprises and service providers. Key areas of focus include:
  • Edge network recommendations: For edge computing solutions, the ‘edge network’ has to work in concert with the ‘core network’ via open interfaces and APIs to enable true multi-vendor ecosystem. SCF believes that current specifications are incomplete and need enhancements.
  • Edge platform services and applications recommendations: Open and consistent APIs across multiple organizations must evolve and align to enable a broad ecosystem of edge platform services and edge applications.
  • EC platform solution recommendations: Blueprints/reference-designs/solutions for open-source edge computing platforms are urgently required for rapid growth of the EC ecosystem.
  • EC and small cell recommendations: Design/deployment blueprints must be available for core use cases to best leverage small cell/edge synergies to deliver multiple benefits: shared virtualized implementations leading to cost efficiencies; integrated network functions & mutually beneficial analytics (radio environment, RAN characteristics, location etc.) leading to advanced functionalities to the edge computing platforms.
  • EC infrastructure recommendations: In determining the COTS hardware for optimal edge computing infrastructure, service providers and enterprises shouldn’t be tempted to reinvent the wheel. There are already robust guidelines for data center & hardware design & implementations from TIA, BICSI and OCP that should be followed.

‘The benefits of edge computing are well known, but what we have begun to demonstrate with this work is that small cells and edge will be critical for enabling service providers and enterprises to realize new profitable service opportunities,’ said Dr. Prabhakar Chitrapu, Chair of Small Cell Forum. ‘Small cells plus edge will also enable new business models for a broad spectrum of stakeholders, including edge infrastructure, edge network and edge platform as a service, as well as direct edge application services to subscribers, enterprises and service providers.’

Going forward, working in collaboration with other relevant Industry Forums, SCF will lead the development of a set of harmonized and consistent set of application, network & system-level APIs to enable small cell networks to facilitate EC services and applications.

SCF will also spearhead the deployment of design blueprints for core use cases, leveraging small cell/edge synergies and open source environments.

The research was made possible by an extended collaboration of leading MNOs, OEMs and Infrastructure providers, brought together by Small Cell Forum, including; American Tower, AT&T, Crown Castle, Druid, Intel, Nokia and Reliance Jio.

A video by Small Cell Forum provides a bit more background of this new Edge Computing and Small Cell Networks whitepaper:



Edge computing is a hot topic and every time we have posted something, we have got a lot of engagement on the topic.



Related Posts:

Friday, 3 April 2020

Operator Cloud Infrastructure and Innovation Strategy

When I wrote about Docomo's Open Innovation Cloud, there was some discussion about what exactly is meant by the cloud, whether it has to be public or private (there is hybrid as well) and if service providers (SPs) are embracing it or not.
So before we jump into the mobile operator's strategies, I thought it would be good to do a quick introduction / recap on what is meant by cloud. Embedded below is a slightly long presentation, which goes in some detail but for most people the first 7 minutes is more than enough.



GSMA's 'The 5G Guide' which was produced last year has a lot of valuable information for the operators and everyone else willing to learn from that. Section 3.11 deals with '5G Value Enablers: Operator Cloud'. The key takeaways from that section are:

  • The Operator Cloud will combine the best of both cloud and edge to enable the 5G ‘Service Delivery Model’.
  • Edge computing in 5G networks will be delivered as Multi-access Edge Computing to reduce latency.
  • An Operator Cloud can help operators to save up to 2% of capex by improving operational efficiency and customer experience.
  • If operators can create competitive global platforms for edge/cloud services, this could unlock a new revenue opportunity of up to $100bn.

The GSMA whitepaper details the importance of operator cloud and the case for MEC, which is suited in what scenario. I am not detailing them here except for the final section below:

Value creation and capture with the Operator Cloud is firstly about an ‘infrastructure strategy’

A common refrain in the industry about the Operator Cloud, edge computing and MEC is that they present a chicken and egg dilemma. Operators seek a robust business case with clearly identified revenue sources and sizes before embarking on the journey to deploy the distributed edge/cloud infrastructure. While this may look like the prudent thing to do, it creates inertia for action and can lead to operators foregoing the opportunity completely.

An alternative approach is to consider the Operator Cloud, firstly as part of the infrastructure strategy of an operator. Under this approach, the Operator Cloud is progressively rolled out together with 5G network build out. Operators also begin to use it for backhaul relief and to improve the QoE for customers.

Under this approach, operators can satisfy their own operational and customer experience needs, and then address new opportunities without needing to impose an unachievable ROI hurdle. Figure 3.11.3 shows the contrast between the infrastructure strategy vs. the innovation strategy.

With new 5G services and applications being defined in more mature markets, operators are keeping their options open as to when is the right time to change their strategy from infrastructure centric to innovation centric.


Related Posts:

Saturday, 9 July 2016

MEC, Small Cells & IoT

Here is a presentation from Vodafone on how Mobile Edge Computing and Small Cells can play a big role in Internet of Things.

Vint Cerf, who is universally recognised as one of the founding fathers of Internet recently said that there will be 1 Trillion devices on the net by 2036, many of them being IoT devices.

This presentation also lays out use cases for IoT. As always, I am interested in hearing your thoughts.