Showing posts with label Analyst RCR Wireless. Show all posts
Showing posts with label Analyst RCR Wireless. Show all posts

Saturday, 3 April 2021

Transition to Infrastructure 2.0

Infrastructure can mean different things to different people in different industries. We tried to explain what it means in the telecoms industry in one of our tutorials here.

When it comes to Infrastructure 2.0, there are articles dating back years. Couple of examples here and here. Back in those days we were talking more about virtualization while today we are talking about containerization and cloudification. We have some introductory presentations on Cloud Native here.

I have heard Qualcomm speakers talk about Infrastructure 2.0 but what does it mean from their point of view? Here is what Cristiano R. Amon, President & CEO-Elect of Qualcomm meant according to RCR Wireless

Infrastructure 2.0 seeks to address the fact that existing core network infrastructure is limited in its ability to handle the highly virtualized network models that the industry is moving toward.

For instance, there has been some concern for awhile now around how data center virtualization will impact existing enterprise networking models.

At the CTIA event, Amon explained that 5G will be revolutionary, creating new industries, use cases, services and network models. However, a network capable of doing all that 5G promises requires “infrastructure like we’ve never seen.”

“It needs to be dense, high-performance, cost-effective and power-efficient for both indoors and outdoors, and support public and private networks with a scalable and flexible networking equipment for diverse deployments across multiple industries and use cases,” he continued. “This modern 5G network is driving a shift towards virtualized radio access solutions or vRAN.”

For further context, in a previous conversation with RCR Wireless News, Amon discussed how this push towards virtualization and openness is a potential vector of disruption to traditional network equipment providers, and this disruption is what will lead to Infrastructure 2.0.

“I believe that vRAN and Open RAN creates a huge opportunity for some of the network equipment providers that will lead the transition in what Infrastructure 2.0 is,” he said, adding that incumbents could “take a leading role in the software that will run in those networks and will provide feature parity between the existing systems and the new systems.”

With the announcement of Qualcomm 5G RAN platforms, we will probably seem them talking a lot more about Infrastructure 2.0

Related Posts:

Saturday, 15 November 2014

Connectivity in the stadiums

I have recently been observing a lots of discussions around connectivity in the stadiums. I have used this picture above a few times to show different solutions available in different situations. You can see that in theory Wi-Fi, DAS, Micro and Pico would all be suitable for the connectivity in stadiums. In practice this is generally limited to DAS and Wi-Fi.

ThinkSmallCell have recently written an article on the stadium Wi-Fi experience of The Cloud here. Some very interesting choices were taken to keep things simple:

For the main stadium bowl, The Cloud designed for 50% concurrent access for the maximum 30,000 crowd, connecting 80 Wi-Fi access points using 1km of fibre and 9km of CAT6 ethernet cable.

Each access point can handle up to 250 concurrent users. Tightly focussed beams were used to segregate seating blocks, splitting these into distinct coverage sectors.

To simplify the design, the older 802.11b standard wasn't used/supported, VoIP was blocked and a maximum of 3 SSIDs assigned. Unlike a cellular system, there's no handoff as you move around the stadium – you'd need to reconnect and create another session. During peak usage, almost everyone is sitting down rather than moving about (if you ignore those jumping up and down on their seats).

Both Wi-Fi spectrum bands at 2.4GHz and 5GHz were used, with devices capable of the higher frequency prioritised to use it. 56% of clients used the 5GHz band, which has much more spectrum and many more channels available. The different propagation characteristics mean there are different coverage footprints, so planners are actually designing two networks rather than one.

The side lobes on the 5GHz coverage footprint were massive, limiting the number of Wi-Fi access points that could be deployed.

You can read the complete article on the ThinkSmallCell website here.

A question some people often ask is why bother with connectivity in the stadiums. There are many reasons and personally, I would rather have connectivity than don't, even if I am not going to use it.


Real Wireless has done substantial amount of work in this area and a slide from their recent presentation discusses the benefits for various parties very well. You can read their opinion on this topic on their website here.

No discussion on Stadium connectivity would be complete without mentioning the US operator AT&T. They regularly publish statistics and details of connectivity in various sports venues on their website here. A recent report from their new site on DAS connectivity in various stadiums as follows:

  • So far this season, there have been 119 pro football games and 214 college football games played across more than 75 different venues where we provide in-venue coverage via Distributed Antenna Systems (DAS). 
  • In total, across these 333 games our customers have used more than 104.9 Terabytes of mobile data on our in-venue cellular networks. That’s the same as 104,913 Gigabytes. Or more simply put, it is equivalent to more than 300M social media posts with photos. 
  • At this point in the year, pro football fans are edging college fans in average data usage per game by a 342GB to 293GB margin. Or a difference equivalent to about 140K more social media posts with photos per game on average.

Another recent report from the AT&T part in San Francisco where both Wi-Fi and DAS are present as follows:
Here are some of the record-breaking numbers we saw on our venue-specific mobile network at AT&T Park from the Giants’ three home games during the World Series:
  • Fans used more than 477GB of data on the AT&T cellular network during the game on 10/25. This is equivalent to more than 1.36M social media post with photos.
    • This marked the highest single game total for cellular data usage at AT&T Park in ballpark history.
  • Fans used an average of approximately 447GB of data per game over the weekend on the AT&T cellular network. This is equivalent to more than 1.27M social media post with photos.
    • It’s an increase of approximately 29% in cellular data usage compared to the average game during the League Championship series vs. St. Louis.
    • It’s an increase of approximately 109% in cellular data usage compared to the average game during the final home series of the regular season vs. San Diego (9/25-9/28).
  • The peak hour of data usage during three home games was on 10/25 was from 5-6pm PT, the hour in which the first pitch occurred. In this hour more than 83GB of data crossed our venue-specific cellular network.
  • On our AT&T Wi-Fi network we saw more than 1,626GB of data move across our network during the game on 10/25.
    • This is the highest single game Wi-Fi total in the history of AT&T Park.
    • 1,626GB is equivalent to more than 4.65M social media post with photos.
    • This showed an increase in Wi-Fi usage of approximately 302% compared to the average game during the 2012 World Series.
    • This showed an increase in Wi-Fi usage of approximately 163% compared to the average 2014 regular season game at AT&T Park.
    • This showed an increase in Wi-Fi usage of approximately 29% compared to the average game of the League Championship series vs. St. Louis.
  • The collective data usage equaled approximately 2.1TB of data across both our cellular and Wi-Fi networks at AT&T Park during the game on 10/25.
    • This marked the highest single game total for collective data usage (cellular and Wi-Fi) in AT&T Park history.
    • 2.1TB is equivalent to more than 6M social media post with photos.
Note: All cellular data is specific to only AT&T customers using the DAS network at AT&T Park.
AT&T DAS guru Paula Doublin was one of the most memorable speakers at this year’s HetNet Expo. The company’s AVP for antenna solutions, DAS and small cells did not shy away from questions about AT&T’s budget for heterogeneous networks, nor did she sugar coat the outlook for small cell deployments. A video of her presentation is embedded below and a writeup is available on RCR Wireless website here.




See Also:

Monday, 3 November 2014

Dynamics of Change, panel discussion from #HetNet2014


A good panel discussion video from HetNet2014 conference. I think the image above would be useful for someone wanting a quick recap of the different types of small cells.

Barry McLaren of Ericsson, John Bramfeld of Advanced RF Technologies, Asad Vaince of Boingo Wireless, Mark Reynolds of the University of New Mexico and Jeffrey Funderburg of AT&T   talk rapid changes in the mobile broadband industry at the HetNet Expo 2014 (#HetNet2014).

Technology changes in the mobile broadband space are happening more rapidly than ever. Wireless service providers are rolling out LTE, with Advanced LTE and Voiceover LTE on the horizon. In parallel, 802.11a/c is being added to the Wi-Fi technology mix and Passpoint-certified devices could be game changers. This panel explores the perspectives from the wireless service provider, original equipment manufacturer, neutral-host provider, systems integrator and end user on how they are adapting—and getting ahead of—the rapid pace of change in the industry.

Questions discussed:
  • How does the latest upgrades impact what you do?
  • What do you envision 5G to be and will we realisitically see it?
  • Is 5G going to get rid of the problems thats keeping you awake in the night. Is it going to make things simpler?
  • How is HS2.0 and Passpoint, helping WiFi rollout and offloading?
  • Are the advances in WiFi going to make Small Cells irrelevant or are they going to work together?
  • What does the migration path look like for a move from CS Fallback to VoLTE with limited handsets available?
  • Is there a quality issue with VoWiFi?