Showing posts with label Vendor Ericsson. Show all posts
Showing posts with label Vendor Ericsson. Show all posts

Tuesday, 2 September 2025

Conical Antennas Boost Vodafone Germany’s Tunnel Coverage

Mobile coverage in tunnels has always been one of the most difficult challenges for network operators. Concrete walls, restricted space and the constant movement of air caused by passing vehicles all interfere with signal stability. Vodafone Germany has now taken a major step forward in overcoming these barriers with the deployment of a new generation of conical antennas. Designed by Ericsson, these antennas are engineered specifically for tunnel environments and have been introduced in the 1,400 metre Arlinger Tunnel near Pforzheim.

The new solution is based on a conical multi-band antenna that combines wide frequency support with a form factor able to withstand tunnel-specific conditions. Traditional antennas in tunnels often struggle with vibrations and pressure changes that occur whenever trains or cars move large volumes of air. These effects can cause instability in reception and transmission performance. The conical design offers superior resistance to these forces. Its aerodynamic shape reduces the impact of airflow and turbulence, which results in more stable signal propagation and higher reliability.

Ericsson’s antenna, known as the Antenna 9011 1LM (KRE 101 2571/1), operates across the 617 to 4200 MHz range. This wide frequency coverage ensures compatibility with all major mobile technologies from legacy 2G through to 5G mid-band and even C-band. The antenna achieves a gain of around 10 dBi and uses cross polarisation to support advanced features such as MIMO. It has been tested under demanding tunnel conditions, including alternating pressure cycles that simulate the effect of trains passing at high speed. These design elements make it particularly suitable for deployment in both road and rail tunnels.

In the Arlinger Tunnel, five of these antennas have been installed. Together they provide seamless coverage along the full tunnel length, ensuring that drivers and passengers can stay connected without interruptions. For commuters this means fewer dropped calls and more consistent data performance, while for Vodafone it represents a significant step in eliminating dead spots in challenging locations. The project also demonstrates how antenna engineering is evolving to meet the requirements of complex environments.

Delivering mobile coverage in tunnels is more complicated than simply placing antennas inside the structure. In shorter tunnels, antennas positioned at the entrance and exit can often suffice. In longer tunnels, however, operators must deploy signal repeaters and distribute the signal along the length of the tunnel using multiple antennas. This requires the installation of cabling and associated equipment, usually during periods when tunnels are closed for maintenance. To avoid duplication, one operator typically provides the infrastructure and others connect their networks to it.

Germany has a particularly extensive tunnel network with more than 270 tunnels on federal highways, over 400 on district and urban roads, and 761 railway tunnels. Collectively these extend for more than 1,200 kilometres. The introduction of conical antennas marks a practical response to the specific difficulties these environments present. Vodafone has already announced that it intends to use the new antenna type in 20 further tunnel projects across the country.

From an infrastructure perspective, the Arlinger Tunnel deployment highlights a broader trend towards highly specialised antenna systems. Rather than adapting generic equipment, manufacturers such as Ericsson are now producing models tailored for environments where airflow, vibration and space constraints dominate. The Antenna 9011 1LM shows how much progress has been made. Its mechanical robustness, compact size and wideband capability make it a versatile component for future-proof tunnel deployments.

Vodafone Germany’s network already reaches more than 93 percent of the population with 5G and the addition of tunnel coverage strengthens this footprint. For the growing number of travellers who depend on uninterrupted connectivity, solutions like the conical antenna are not just a technical achievement but also a practical improvement to everyday digital life. They also underline the importance of collaboration between operators and equipment vendors in tackling some of the toughest remaining infrastructure gaps.

Related Posts

Tuesday, 15 October 2024

BT/EE’s Growing Dependence on Small Cells to Boost Network Performance

EE, the consumer division of BT Group, stands as one of the UK’s largest subscription businesses, serving 25 million customers. Backed by the UK’s fastest mobile network, EE claims to deliver superfast connections in more locations than any other mobile network operator in the country.

Back in March 2022, EE announced that it has successfully deployed 200 new small cells across its UK network to boost capacity in high demand areas, allowing customers to benefit from download speeds up to 300Mbps. The press release noted:

EE has successfully deployed 200 new small cells across its UK network to boost capacity in high demand areas, allowing customers to benefit from download speeds up to 300Mbps. Small cells are mobile radio cells that help to provide better coverage for customers at street level, where it’s often impractical to build larger sites. Located on a variety of existing street assets, including BT’s iconic red telephone boxes, the units offer discreet boosters for coverage and are part of EE’s investment to maintain the UK’s best network.

Working in partnership with Nokia, EE uses advanced network analytics to identify areas where small cells will deliver a boost to network performance. A 4G small cell solution is then deployed which uses multiple spectrum bands to give a better experience. EE’s licenced 1800MHz and 2600Mhz spectrum bands are coupled with unlicenced 5GHz spectrum, to deliver standout speeds in densely congested areas. Working with local authorities, EE is making use of existing street assets to minimise their impact, including lamp posts, CCTV columns and BT phone boxes.

As well as Leeds, London and Manchester, EE and Nokia have also brought these new small cells online in parts of Edinburgh, Glasgow, Liverpool, Newcastle, Nottingham and Scarborough. Hundreds more small cell deployments are planned in the next 18 months, as EE uses the technology to bring additional network capacity to more locations, including some summer hotspots. EE’s commitment to providing the highest possible quality of experience will also see its use of small cells extend to its 5G network, with trials expected to begin soon. Nokia’s AirScale portfolio can also be seamlessly upgraded to 5G.

Then a BT press release in June 2023 highlighted that EE now had 611 small cell sites carrying 20TB of data traffic every day – the equivalent of streaming 8,000 hours of HD video or 280,000 hours of music – demonstrating the substantial value they offer to customers in high demand areas, as well as the importance of EE’s strategy to build prior to the arrival of any congestion whenever possible.

The most recent announcement from Aug 2024 highlighted that EE has now deployed over 1000 small cells across the UK, marking 400 new deployments over the last 12 months including its first 5G sites, recently installed in Croydon, London. The press release said: 

EE’s first 5G small cells are also now live as part of a trial taking place in the London Borough of Croydon. Seven sites, including four along Croydon’s London Road – a busy thoroughfare lined with businesses, shops and homes – are now supporting the local community, seeing over 3TB of traffic each day.

EE uses advanced network analytics to identify specific locations which would benefit from the performance boost enabled by a small cell. It then works with partners Nokia and Ericsson to deploy the solution itself, reducing congestion and enabling customers to benefit from speeds of up to 300Mbps for 4G cells, and 600Mbps for 5G. EE is unique within Europe in combining licenced 1800MHz and 2600Mhz spectrum with unlicensed 5GHz spectrum in its 4G small cells, which helps to deliver excellent capacity and speeds. The new 5G cells in Croydon are configured with licensed 1800MHz spectrum for 4G and 3.5GHz for 5G.

In addition to the above announcements, Freshwave, a connectivity infrastructure-as-a-service provider, announced that they have deployed neutral host solution in the City of London and EE are the first MNO to go live on this infrastructure. Their press release said:

A first-of-its-kind outdoor small cell project in the City of London has been such a success that it has now moved beyond the trial phase. Twenty-five new sites for mobile network operator (MNO) EE are now live on Freshwave’s infrastructure, adding capacity and enhancing the 4G and 5G network experience for EE mobile users in one of the world’s preeminent financial districts. Dozens of additional new sites for EE are also currently being built and will enhance mobile connectivity to the UK’s best network(1) in even more of the Square Mile when they are brought live in the future.

Freshwave, a connectivity infrastructure-as-a-service provider, built new mobile infrastructure for the project and EE was the first MNO to go live in December 2022. Across all of the sites involved in the initial pilot, EE is seeing up to 7.5TB of data downloaded per week. 

Freshwave’s bespoke solution enables the network to accommodate all four MNOs on 4G and 5G from day one with no adjustments needed to the infrastructure – making it a UK first. The solution features specially designed wideband antennas, cabinets and columns and extensive dark fibre to each cabinet.

As a neutral host, Freshwave operates the network deploying shareable infrastructure, reducing equipment duplication and creating a more cost-effective solution. This approach also minimises street clutter and the associated disruption during street works. Shareable infrastructure also reduces the environmental impact, while still assuring the mobile connectivity people expect when out and about.

The 25 new live sites are strategically located throughout the Square Mile, including notable landmarks such as outside St Paul’s Cathedral, Cannon Street and the Bank of England on Threadneedle Street.

Outdoor small cells are installed at street level which make them ideal for adding capacity to mobile networks. In busy urban areas, where large numbers of people use their mobiles simultaneously, demand on the macro network can be substantial. Outdoor small cells help alleviate some of this demand themselves, relieving the macro network and ensuring a better experience for users. 

I anticipate many more announcements like these in the future, as the industry increasingly relies on higher frequencies to relieve capacity constraints in densely populated urban areas. 

Related Posts

Tuesday, 27 June 2023

Ericsson's Massive MIMO Handbook(s)

Sometime last year, Ericsson published a detailed Massive MIMO Handbook, which contains two documents:

  • Massive MIMO Handbook
  • Massive MIMO Handbook – Technology Primer

The main purpose of the Massive MIMO Handbook is to provide a guide for how to use Massive MIMO to meet the performance requirements in a 5G mobile networks. It should also provide a guide for how to choose suitable products in typical network deployment scenarios. The handbook shall also briefly explain key aspects of how Massive MIMO works and how the different technology components affect network performance in field.

This handbook primarily targets the Massive MIMO stakeholders in the communications service providers´ organizations. It can also be used by internal Ericsson organizations.

The document focuses on Massive MIMO solutions, including as a means for meeting the performance requirements in the network. Focus is on products operating with time division duplex (TDD) on mid-band spectrum, typically 3.5-3.7 GHz. Conventional radio solutions are also included as an alternative where Massive MIMO is not needed or not cost efficient. Furthermore, emphasis is on the radio solution, i.e. the radio parts and the antenna parts. To keep the document focused and limited in volume, the baseband solution, site solution other than radio parts and the antenna (e.g. power, enclosure, cooling, etc.), transport solutions (backhaul and fronthaul) are not included. High-band (mm Wave) and FDD are not included in this version. The service in focus is mobile broadband (MBB) as this is the dominating service in all mobile networks.

The purpose of Massive MIMO Handbook – Technology Primer is to provide a deeper understanding to how Massive MIMO works, why it works and what performance is achievable in a real network deployment. Many related topics that provide additional insights to the background of Massive MIMO, e.g. antennas and wave propagation, the implications of Massive MIMO, e.g. architecture and implementation and radio requirements are also covered.

The different chapters of the Technology Primer can be read selectively and standalone to deepen knowledge where the reader chooses. The chapters are however organized in a way that they best are read in succession. For example, the chapters: antennas and wave propagation, antenna arrays, multi-antenna technologies, 3GPP solutions, network performance and Massive MIMO features will be better understood if read in a sequence. If readers has a reasonably good understanding of an area from start, they do not need to read everything in these chapters, and rather selectively read what is important to them.

PDF can be downloaded from here.

Related Posts

Tuesday, 16 May 2023

Deutsche Telekom 5G Small Cells in Phone Boxes

Vodafone and BT/EE in UK have been deploying small cells in phone boxes for years, now the German operator Deutsche Telekom is going the same way as it starts dismantling the last remaining 12,000 public telephones of the 160,000 that used to exist. 

The Museum for Communication in Frankfurt (link) has models of the German Phone Boxes. The following is an extract from DT's blog post, translated in English by Google Translate:

The well-known "yellow telephone boxes" have not been there since 2018. There are currently around 12,000 public telephones from Telekom. The steles or so-called basic telephones are often located at train stations, airports or on exhibition grounds. They are not economical, they are outdated and consume large amounts of energy. On average, it is between 500 and 1,250 kilowatt hours per year - depending on the equipment at the location. By switching off the unused technology dinosaurs, between six and 15 million kilowatt hours can be saved annually. This corresponds to the power consumption of several thousand apartments. The supply of spare parts for the old ISDN technology is also being discontinued by the manufacturers and is becoming increasingly difficult. Despite all the good memories, it's about time, even with this look, 

Telekom will gradually phase out the service by early 2023. From November 21, 2022, coin payment will be gradually deactivated nationwide for the remaining 12,000 telephones. From the end of January, the payment function using telephone cards and thus the entire telecommunications service at the telephone pillars or booths will also be discontinued.

The dismantling of the steles will then begin, which is expected to be completed by the beginning of 2025. In consultation with the communities, Telekom continues to use around a quarter of the sites to improve local mobile communications without a public telephony function. It is converting the locations with so-called small cells. These are small antennas that amplify cellular signals and thus further improve cellular communications. 

Since the Telecommunications Act was amended at the end of 2021, there is no longer any obligation to operate public telephones. Due to the low usage, the public telephones no longer contribute to the basic service of the population. Even for emergency calls, the public telephones are no longer relevant. Here, too, the mobile phone takes over and supports, for example, by transmitting the exact location information.

This video below shows how some of these phone boxes will have Ericsson's small cells. There are two different approaches. Some of them will be D-RAN and some of them will be C-RAN, where C is Centralised in this case. Switch on the subtitles for English translation.

Related Posts

Monday, 11 July 2022

Three UK's 5G C-RAN Infrastructure in Birmingham, UK

The Wireless Infrastructure Group (WIG), recently announced the launch of a significant new infrastructure project set to transform mobile connectivity across Birmingham. They have deployed their own fibre backbone across the city and partnered with Birmingham City Council to connect up tens of thousands of streetscape assets for mobile infrastructure. An article highlighted:

WIG’s neutral host network infrastructure can support all mobile networks and has been anchored by Three UK running 5G services and creating the UK’s first large-scale 5G centralised radio access network (C-RAN) to enable super-fast speeds for all Three’s customers.

WIG’s network will also play a key role in supporting the vital testing of connected and autonomous vehicles (CAVs) on Birmingham’s streets. WIG has developed this complex project in its role as lead communications infrastructure partner to Midlands Future Mobility – the organisation responsible for the UK’s largest real world test bed for CAVs.

Project Highlights:

  • Birmingham-wide 5G C-RAN network utilising WIG-owned fibre back-bone enabling ultra-low latency capability with fibre fronthaul.
  • Contiguous high speed and high capacity 4G and 5G services from Birmingham International Airport through to the city centre.
  • Future-proof, multi-operator, multi-technology architecture that will support 5G in standalone and non-standalone modes.
  • Long-term agreement for WIG and its customers to utilise tens of thousands of assets owned by Birmingham City Council.
  • Deployment of long-term sustainable infrastructure solutions, supporting small cells and making use of existing street furniture.
  • Three UK customers already benefitting from 4G and 5G delivered by the infrastructure with service throughput in excess 1Gb/s. Three’s initial deployment area includes city centre capacity hot spots together with contiguous high speed and high-capacity services across 20kms of the busiest parts of the Midlands Future Mobility testbed route.

A short case study on this is available here.

In a recent video, embedded below, Dr. Peter Clarke highlighted 'Blazing Three UK 5G from Brand New Small Cell Poles of Wonder in Birmingham'. The video embedded below feature Commscope VVSSP-360S-F antennas, Commscope cabinets and Ericsson Radios.

For more details also checkout Peter's LinkedIn post here.

Related Posts

Friday, 17 December 2021

Demos from Ericsson's Radio Tech Day 2021

Ericsson's Radio Tech Day is a cyclical meeting intended for the telecommunications industry and technical staff of operators in Poland. Engineers share projects, describe best practices and learn from each other's experience. During the conference, the latest solutions in the field of radio and core technology, both in the field of software and hardware, as well as the achievements of start-ups cooperating with the company, are presented.

The following video is from the recent event held last month:

Related Posts

Friday, 10 September 2021

Ericsson's Street Solutions

Ericsson’s announced that their Street portfolio offers operators and other service providers an opportunity to seamlessly bring connectivity to where it is needed. Part of the Ericsson Radio System, the street solutions are an integrated part of the network, with feature parity and end-to-end performance. 


In a recent press release they announced:

5G deployments are accelerating across the country at a faster rate than expected. According to Ericsson’s annual mobility report, by the end of 2021, 25 percent of the global population will have 5G coverage. In North America, more than 360 million 5G subscriptions are anticipated in the region by 2026, accounting for 84 percent of mobile subscriptions.

However, connectivity can suffer in dense urban environments, and as 5G comes to U.S. cities, urban rollouts are grappling with challenges like how to deploy non-intrusive sites, how best to utilize all frequency layers, and how to streamline site permitting and installation. Many sites need to expand 5G capacity, and hotspots and streets need strengthened capacity in both low, mid and high-band to build a complete 5G network as traffic grows.

Powered by Ericsson Silicon, these new solutions are:

  • Street Radio 4402: Designed to turn a streetlight into a low- or mid-band 5G site in 15 minutes, these compact radios are an industry-unique collaboration with Ubicquia, boosting 4G and 5G experience with zero footprint;
  • AIR 4435: The world’s smallest 4T4R street antenna-integrated radio is designed for minimum footprint and easy installations, adding excellent mid-band capacity to macro coverage gaps;
  • Street Macro 6705: A complete mmWave base station with integrated RAN Compute is an industry-leading end-to-end solution with low visual impact.

Ericsson Street Solutions also include transport solutions for any 5G street site, with wired and wireless backhaul and fronthaul solutions. And zero footprint power systems for street and hotspot sites are 100 percent carry to site, with low maintenance and operations costs.

A brochure with all the necessary details is available here.

Related Posts

Friday, 4 June 2021

Three UK's Gigabit 5G Poles Explained


Peter Clarke does a great service to the mobile industry, especially in UK, with his detailed look at the mobile network's infrastructure. 

Three UK was Huawei shop but after the limitations imposed on them, they moved to Ericsson and announced with a big bang.

When they said in December that they will have 1000 5G sites, many were left wondering how many of those would be Huawei and Ericsson

But they did make a fantastic progress transitioning to E///

Now Peter has made a video detailing the Ericsson Three UK sites. It has a lot of useful information and is embedded below.

Let us know what do you think.

Related Posts:

Friday, 26 February 2021

Samsung and Ericsson Talks Massive MIMO


Massive MIMO is a fascinating topic. First is that there is no end to learning about it and secondly, the more information I put out, the more hunger people have about it. In the recent months there have been quite a few product announcements on the topic so we thought, why not do a blog post on it. 

Before we start, why not look at Massive MIMO and Beamforming. Mpirical has a short and sweet video explaining it. It is embedded below.

The video discusses four main topic areas: Beamforming vs Spatial Multiplexing, Beam Creation and Steering, Massive MIMO and finally MIMO Panel Antennas.

Now that we have refreshed the concept, let's look at what the product announcements were. 

The first was this blog post by Ericsson on 'How to build high-performing Massive MIMO systems' where they talked about how Ericsson has mastered the Art and Science of Massive MIMO to both unleash the full capacity benefits and extend the coverage of the new 5G mid-band spectrum - bringing outstanding user experience today, and setting the stage for the advanced applications of tomorrow.

The post starts with the 101 of radio physics, then talks about “Outsmarting” physics with Massive MIMO and Beamforming and finally it talks about the secret sauce in Ericsson AAS (Advanced Antenna Systems). The tweet below shows a practical Massive MIMO antenna and how it works.

In addition, Ericsson announced an "ultra-light Massive MIMO radios and RAN Compute baseband solutions." You can read all about it on their Massive MIMO page here and in the Tweet below.

The second was a press release by Samsung announcing Massive MIMO Roadmap in New Whitepaper, which is available here.

The following video shows world's 1st commercial 5G Massive MIMO Radio by Samsung

As the deployments start ramping up, we will see more product announcements on these. The main challenge that needs solving is the huge amount of power consumption. Probably a year or two before we see a breakthrough.

Related Posts:

Thursday, 19 November 2020

Telia Norway Launches 5G Fixed-Wireless Access (FWA)

Telia Norge (Norway) claims to have become the first of the country’s CSP to introduce a Fixed-Wireless Access (FWA) 5G service. Announcing the product development in a press release, the operator said:

Telia Norway is challenging the broadband market again and is the first in the country to offer wireless broadband (FWA) with 5G. New and existing customers now have access to very high and stable internet speeds in the home delivered over Telia's super-fast 5G network. 

- We are very proud to be the first in Norway with wireless broadband with 5G. We are experiencing great demand for wireless broadband across the country, and are confident that the 5G product will be very attractive to many, especially copper customers who now need new internet, says PÃ¥l Rune Kaalen, head of the private market in Telia Norway. - We are starting the rollout in Trondheim, and will gradually open for ordering based on where in the country we have 5G coverage, and where we experience great interest from customers. In areas of great interest, we will actively prioritize the development of 5G.

5G fiber speeds

With 5G wireless broadband, you as a customer get very high and stable internet speeds at home delivered over Telia's super-fast 5G network. Initially, download speeds of 100, 200 and 300 Mbps are offered, which are the fastest speeds on the market today. In the long run, Telia will deliver even higher speeds on the product. All you need to use wireless broadband is a small outdoor antenna receiver and an indoor router, which is delivered when the product is installed in your home. The internet signals come from the nearest base station.

- We are committed to ensuring the best possible customer experience, and therefore the product comes with a dedicated outdoor antenna receiver and a market-leading Wi-Fi 6 router, which provides maximum speeds and optimal stability when surfing, streaming and playing, says Kaalen. - Furthermore, we always ensure a professional installation in your home, and since the internet signals come from a base station, you avoid extensive digging as with fiber, which provides a cheap, fast and not least flexible installation.

Existing customers who currently have 4G wireless broadband will easily be able to upgrade to 5G by replacing the antenna receiver outdoors. The wireless Wi-Fi 6 router is already ready for the new solution.

Half the population of 5G next year

Telia has high speed in the development of its national 5G network, and has so far opened the network in Oslo, Bergen, Trondheim and Lillestrøm. Wireless broadband with 5G will be offered continuously in areas that have and receive 5G coverage. Telia's 5G development is taking place area by area throughout the country, and during the next year, half the population will have access to 5G where they live. Telia will be the first with a nationwide 5G network by the end of 2023.

- More and more people will have the opportunity to order wireless broadband with 5G in the time ahead, and as a customer it pays to choose Telia, as we are at the forefront of 5G development in this country while delivering the fastest internet speeds, says Kaalen. - At the same time, we are working hard to be able to deliver a leading TV offer through wireless broadband, so we will come up with more exciting news soon.

Telia wireless broadband with 5G is offered with download speeds of 100, 200 and 300 Mbps, with 50 Mbps in common upload speeds. The fixed monthly price is NOK 699, 799 and 999, respectively, and the installation cost is NOK 3,499 for new and existing customers. The product comes with a dedicated outdoor antenna receiver and market-leading Wi-Fi 6 routers - both from the renowned network manufacturer Zyxel. 

Their Wireless Broadband page provides more information on the different types of broadband and the price plans. 

We have explained FWA in our tutorial here. The tutorial video is embedded below.

Worth noting that the 5G network by Telia Norway is from Ericsson.

Related Blog Posts:

Thursday, 12 November 2020

TIM and INWIT to deploy small cells in Italy


INWIT (Italian Wireless Infrastructures) is currently Italy’s major Tower Operator providing widespread coverage throughout the country, hosting the transmission equipment for all main national operators. Back in March, INWIT became the largest tower company in Italy after purchase, by INWIT, of a minority stake of 43.4% of the share capital of Vodafone Towers and for the subsequent merger of the latter into INWIT. 

In a press release last week, TIM and INWIT announced:

TIM and INWIT started a collaboration to deploy small cells in Italy’s major cities in order to make the mobile phone signal more performing and support the development of 5G.

The collaboration will begin in Milan and Genoa where it is expected to install about 100 small cells and will continue in other cities and places with high traffic density, as the support of micro-antennas will be needed to achieve an optimal 5G network.

Small cells are small antennas built and used to integrate the signal that is guaranteed by the systems placed on traditional towers. Despite the spread throughout the territory of traditional macro towers (INWIT has over 22,000 sites) and despite the fact that their number is growing to meet the ever-increasing demand for mobile connections by customers, more and more small cells systems capable of increasing the quality of the signal will be developed in large urban centers.

Small cells play a fundamental role, especially for the development and perfect functioning of 5G and its services. Indeed, this new technology features low latency (a minimum delay between the request and the reception of information) and a data transmission speed ten times faster than previous systems. In order to maintain these characteristics and to allow all connected devices to operate at their best, the quality of the 5G radio signal must always be optimal.

TIM and INWIT have already experimented underground solutions in several municipalities, such as small cells that are inserted in manholes under the road surface that, especially in venues with a remarkable artistic value or in ancient towns, by no means alter the artistic integrity.

It is interesting to see that there there has already been some experimentation with small cells in manhole covers. We have written extensively about it and you can find some of the posts in the references below.

It is also important to point out that in the announcement above, it says: "Small cells are small antennas built and used to integrate the signal that is guaranteed by the systems placed on traditional towers. "

Small Cells definition can be quite loose, so not sure what they mean by this. In the USA, outdoor Small cells is generally used to refer to Remote Radio Heads (RRHs) rather than an all in one unit. It can mean that.

Small cell forum also clarified the definition of 5G small cell that is available here.

TelecomTV in their newsletter on Monday said: "The team at TIM (Telecom Italia) tells us that the small 5G RAN nodes being deployed in partnership with towers firm INWIT will be for TIM’s use only, and that technology from multiple vendors will be used, though the initial rollouts in Milan and Genoa will use small cells supplied by Ericsson. "

Hopefully we will find out more details in the near future.

Related Posts:

Wednesday, 23 September 2020

Award Winning Ericsson Radio Dot Provides 5G Coverage on China Subway

It's been over 2 years since we last talked about the Ericsson's 5G Radio Dot. Earlier this year, Radio Dot 4475 scooped a Red Dot Design Award for the product’s high design quality.


In a press release earlier this month, Ericsson announced:

Commuters and travelers on Shenyang’s subway Line 9 can access China Mobile 5G connectivity across all 22 stations on the line, powered by the Ericsson 5G Radio Dot. The 5G network has been operational for several months.

More than 900,000 passengers use the subway system in Shenyang, north east China, every day. The Ericsson 5G Radio Dot deployment on Line 9 is helping China Mobile to meet the increasing data needs from its customers - particularly in high-quality uninterrupted video and streaming traffic - in subway stations as passengers wait for, or change, traveling connections.

The Ericsson 5G Radio Dot System on Line 9 operates on various China Mobile frequencies. It provides a stable downlink of 1Gbps and a maximum transmission rate of up to 1.4Gbps. A 1GB high-definition movie could therefore be downloaded within 10 seconds.

The compact and easily deployable nature of the solution meant that Ericsson was able to install more than 500 5G Radio Dots across the 22 stations in just 20 days - 40 days ahead of schedule.

Ericsson and China Mobile continue to work in partnership on subway 5G connectivity in Shenyang as part of the city’s digitalization ambitions.

Back in July, Vodafone was showcasing Standalone 5G. One of the components if this network was the 5G Radio Dot.

To support the university’s 5G ambitions further, Vodafone has also installed Ericsson’s 5G Radio Dot System in the university’s Disruptive Media Learning Lab and National Transport Design Centre. The indoor technology will deliver fast, high-capacity 5G in key buildings to support its innovative teaching and learning.

Last year, Ericsson and Elisa piloted private networks in Finland at Elisa’s facilities in the first of half of 2019 using a prepackaged Ericsson Private Network solution that included Ericsson Enterprise Core, Router 6000 and Radio Dot System for indoor coverage. 

Again last year, Ericsson and Swisscom deployed the 5G Radio Dots in the Swiss service provider’s live 5G commercial network and simultaneously made the first 5G data call in Europe between two offices over the 5G Radio Dot System during a Joint Mobile Day event in Bern, Switzerland. The call, made on July 1 2019 between Ericsson’s office in central Bern and Swisscom’s office in the nearby town of Liebefeld, was a tech milestone for the Swiss service provider’s 5G network rollout since it became the first in Europe to switch on a commercial 5G network – fully powered by Ericsson – in April 2019.

Related Posts:

Wednesday, 2 October 2019

4G LTE Man In The Middle Attacks With A Hacked Small Cells


Here is an interesting talk from recent HITBSecConf by Xiaodong Zou. HITBSecConf or the Hack In The Box Security Conference is an annual must attend event in the calendars of security researchers and professionals around the world. Held annually in Kuala Lumpur, Malaysia and Amsterdam in The Netherlands, HITBSecConf is a platform for the discussion and dissemination of next generation computer security issues.

From the talk narrative:

Femtocells offer a user the ability to have a small base station located within their house or other area. These small base stations provide access to the core telecom network where poor reception from an eNodeB would normally prevent consistent coverage. Femtocells has been standardized in LTE since release 8, and is referred as Home eNodeB, or HeNB. HeNBs are mandated to have an IPsec connection back to a security gateway (SeGW) to protect traffic flowing into and out of a Mobile Network Operator (MNO)’s core network.

If the HeNB is within the physical possession of an attacker, this provides unlimited time to identify a flaw on the HeNB. A compromised HeNB can be used in a manner similar to a rogue base station, but will also provide the attacker access to clear text traffic before it is sent back to the core network. There are more than ten different types of HeNBs deployed in China. Ericsson ENC-nRBS01B40 is one of them – a TD-LTE base station working on band B40.

In this talk, we will cover:

1.) How to root a 4G LTE femtocell.
2.) How to make the femtocell portable.
3.) How to perform man-in-the-middle attack with the femtocell.
4.) Show the prototype of Hacking Box of S1 Interface (HBoS)

Slides and video embedded below:






Related Posts:

Monday, 2 September 2019

5G Small Cells on 'Smart Poles' in Denver


There was a good report in FierceWireless about Verizon installing 5G in Denver using special ‘smart poles’. We have covered this topic of smart lampposts and poles extensively for many different countries including India, UK, Portugal, China and even Japan.

The article states:

The Boulder, Colorado-based company Comptek Technologies has designed stand-alone poles to house wireless small cell equipment that is completely hidden within the poles. The City of Denver has approved the design of these Comptek City Poles, and Verizon is now deploying them in Denver for 4G and 5G small cell equipment.

In addition to Verizon, Comptek is also working in different parts of the country with all the other major wireless carriers either directly or through their deployment partners. For instance, Comptek is working closely with its customer Xcel Energy, which has an eight-state footprint. Xcel is helping carriers to deploy their small cells on the utility’s existing vertical infrastructure. And in some cases, Xcel is taking down existing light poles and replacing them with Comptek poles that combine small cell equipment along with a streetlight.

The company has a national agreement with Verizon. Besides Denver, Comptek is working with Verizon in other cities including Columbus, Cleveland and Cincinnati, Ohio; Anaheim, San Diego and Los Angeles, California; as well as Salt Lake City. In the Denver/Front Range area, the company has about 350 poles under contract. And across the U.S. it’s got contracts to erect about 1,000 poles by the end of 2019.

CityPoles' website here isn't updated with the latest info but the earlier press release stated 300 small cells in Denver.


Continuing from the article:

The poles are designed in modular sections. There’s a foundation, base cabinet, shroud, upper pole and top antenna section. They’re custom-designed to incorporate various wireless equipment configurations, cabling, power supplies and antennas. In addition to the physical pole itself, Comptek also provides electronics and environmental controls. The poles can support single or multiple carriers.

Jim Lockwood, CEO of Comptek said that for 5G, Ericsson’s mmWave equipment is mounted in a tri-sector format, meaning that the radios and antennas are integrated with each other and they’re mounted at the top of the pole in three panels that face in different directions. Representatives from Ericsson and Verizon could not verify the "tri-sector format" or provide any additional information about it.

Related info:

Related Posts:

Sunday, 16 June 2019

Turkcell's Small Cell Strategy

Turkcell is one of the industry’s leaders in extending the traditional MNO model into new services, illustrated how the business case is strengthened by diversity, with small cell roadmaps which span multiple spectrum bands, form factors, vendors and deployment environments.

During Small Cells World Summit, Turkcell presented their Small cell strategy and case study.


As the tweet above says, they have 3 separate use cases for small cells:

  • VIP/business complaints & retention
  • General in building / enterprise
  • Outdoor capacity & coverage enhancement


Their strategy is to work with multiple vendors for different use cases. The strategy has clearly paid off as different small cells are working seamlessly with the macrocells indoors and outdoors.


Indoor Femtocell Trials with Airspan and Nokia has significantly improved user experience and throughput indoors.




Various deployments with Huawei Micro has been done to improve coverage and capacity outdoors, for voice and data.


Related Posts:



Sunday, 28 April 2019

Altaeros’ Autonomous Tethered Aerial Cell Tower, SuperTower ST200

Couple of months back, Altaeros announced "world’s first commercial aerial cell tower". This is a contentious point as the UK MNO, EE has already claimed "World’s first commercial use of Helikite ‘air mast’ technology showcased with 360° live stream over 4G" back in 2017. While we can argue that EE's aerostat was a Helikite while this is something different, they are both aerial cell towers.

Their press release says:

The SuperTower uses a proven aerostat platform, combined with innovative automation and control software, to deploy radios and antennas over four times higher than traditional cell towers allowing carriers to efficiently cover substantially more area than traditional towers. The ST200 was tested with six high capacity Ericsson 4G LTE radios and three highgain Matsing lens antennas. During initial testing users were able to stream high-definition video at distances well beyond the reach of a typical cell site, even in the hills and forests of New England. Altaeros is initially deploying SuperTowers in partnership with carriers in the US, with plans to quickly expand internationally.

The website specifiesThe Altaeros SuperTower is designed to meet this challenge. Each SuperTower deploys radios and antennas over 800 feet above ground level. Greater height and flexibility mean a single SuperTower replaces fifteen regular cell towers at 60% lower cost, shifting the rural networks from a loss-making endeavor to a growth engine for carriers.

Mobile World Live provides some more details about it's trials:

Ben Glass, CEO and CTO of the company, told Mobile World Live (MWL) the company is testing the system with “some of the big carriers that are household names”, with a view to deploying it in the latter part of 2019 and early 2020.

The executive did not confirm which operators are testing the technology. However, applications filed with the Federal Communications Commission show it conducted FDD-LTE tests in PCS spectrum and more recently trialled TD-LTE at 2.5GHz.

A Sprint representative told MWL it allowed Altaeros to use some of its 2.5GHz spectrum for the latter testing, but did not confirm whether it is evaluating the technology for itself.

Verizon flat denied it is involved: AT&T and T-Mobile US had not responded at the time of publishing.

Here is their video providing more details:


The website specifies potential applications for Altaeros’ technology include:

  • Cellular Networks
  • Industrial/Agricultural IOT
  • Fixed Wireless
  • Environmental Monitoring and Agribusiness
  • Disaster Recovery
  • Public Safety

Couple of important points from the FAQ's

What if a tether breaks loose?

The Altaeros SuperTower has three load-bearing tethers. If one of the tethers breaks loose, the remaining tethers will reel in the shell. In the very unlikely scenario that all three tethers break loose, an automatic vent will begin to release helium to allow the SuperTower to slowly descend to the ground. Similar safety features have been reliably demonstrated on hundreds of existing aerostats.

How fast can the SuperTower be deployed?

Once on site, the Altaeros SuperTower can be inflated and deployed in a few days. Our system does not require a crane or cement foundation for its installation.

In disaster recovery kinds of use case, air masts like these may need to be deployed for a few days to weeks. It is essential that they can reach their destination quickly. Having reached their destination, they also need to be deployed in a few hours. On the other hand there are many other scenarios where these kinds of air masts, as long as they can stay up for months, be useful for something or other. We look forward to hearing more about them in future.


Related Posts: