Showing posts with label Webinars. Show all posts
Showing posts with label Webinars. Show all posts

Tuesday, 4 October 2022

Disaggregated Networking for 5G - What is Needed to Make it Work?

The Open Optical & Packet Transport (OOPT) group is a project group within Telecom Infra Project (TIP) that works on the definition of open technologies, architectures and interfaces in Optical and IP Networking. We looked at a detailed webinar from OOPT here.

The Disaggregated Cell Site Gateways (DCSG) within OOPT works on the definition of open and disaggregated whitebox cell site gateway devices that operators can deploy in their current 2G/3G/4G cell sites, as well as in the upcoming 5G deployments. The team produces technical specifications that define software, hardware and API requirements that represent the needs of mobile network operators and also works with industry partners to develop devices that meet the specifications.

At TIP Summit Latam in 2021, Ulrich Kohn, Director, Solutions Marketing, ADVA presented a talk on Disaggregated Networking for 5G where he looked at disaggregating high-end routers, DCSG, strategies of making white boxes timing aware and finally, disaggregated synchronization solutions.

His talk is embedded below.

You can check out ADVA's portfolio of TIP products here.

Related posts:

Friday, 12 February 2021

Small Cells World Summit Open RAN Webinar


Small Cell Forum hosted an open industry Small Cells World Summit webinar, on December 9, 2020, on the topic of Small Cell Open RAN. It included panelists from companies across the global Small Cell eco-system - Qualcomm Technologies, Inc., Radisys, Reliance Jio and Picocom. The panel shared insight into SCF’s FAPI and Option 6 open interfaces and their applications within 3GPP and O-RAN frameworks.

The video of the webinar as follows:

Agenda and speakers:

  1. Julius Robson, Chief Strategy Officer, SCF - Small Cell Open RAN specifications:  5G FAPI and Option 6 
  2. Andrei Radulescu, Senior Staff Engineer, Qualcomm - FAPI: MAC/PHY interface for Small and Macro Cells
  3. Ganesh Shenbagaraman, Head of Integrated Products and Ecosystems, Radisys  - Network FAPI deployment scenarios and O-RAN alignment
  4. Ravi Sinha, Director, TechDev and Solutions (4G, 5G & MEC Solutions), Reliance Jio - Building the small cell  ecosystem around FAPI components and Option6 interfaces
  5. Vicky Messer, Director Product Management, Picocom - nFAPI test support
  6. Summary, next steps and Q&A

Related Posts:

Tuesday, 7 April 2020

TIP Webinar on Open Optical & Packet Transport (OOPT)

The Telecom Infra Project (TIP) Open Optical & Packet Transport (OOPT) group is a project group within Telecom Infra Project that works on the definition of open technologies, architectures and interfaces in Optical and IP Networking.

The project is an engineering-focused effort led by major operators, technology vendors and research institutions. It concentrates on different parts of the Transport network architecture, including optical transponders, line systems, IP access devices, open APIs and network simulation and planning tools.


TIP held a public webinar on 25th March with a lot of details about the group and the different projects within the group. The webinar is embedded below:
OOPT Public Webinar March 2020 from Telecom Infra Project on Vimeo.

You can jump to the part that may be of interest to you:

02:20 - Welcome & Introduction to TIP, Attilio Zani (TIP)
12:30 - Introduction to Open Optical & Packet Transport (OOPT) Project Group, Víctor López Álvarez (Telefónica)
23:00 - Disaggregated Cell Site Gateways (DCSG), José Antonio Gómez (Vodafone) & João Gabriel Evangelista Aleixo (TIM Brasil)
41:00 - Disaggregated Optical System (DOS), Johan Hortas (Telia)
45:00 - Cassini Overview, Jeff Catlin (EdgeCore) & José Miguel Guzmán (Whitestack)
1:00:00 - Phoenix Overview, Anders Lindgren (Telia)
1:09:00 - Disaggregated Optical Routers (DOR), Kenji Kumaki (KDDI)
1:17:00 - Physical Simulation Environment (PSE), Gert Grammel (Juniper) & Gabriele Galimberti (Cisco)
1:28:30 - Control, Information Models and APIs (CIMA), Harald Bock (Infinera) & Stephan Neidlinger (ADVA)
1:38:30 - Converged Architectures for Network disaggregated & Integration (CANDI), Oscar González de Dios (Telefónica) & Hirotaka Yoshioka (NTT)
1:52:30 - OOPT NOS – Goldstone, Kingston Selvaraj (PaIC Networks)
2:02:00 - Closing Remarks, Víctor López Álvarez (Telefónica)

Sunday, 15 January 2017

Look back and forecast of Small Cells


Going through 'End of Year Report' by ThinkSmallCell. A good summary of what happened in 2016 and what we can see in 2017. This picture above from the same report is interesting. As you can see that the average speeds of 3G have decreased while that of 4G has increased significantly. I suspect what has happened is that the newer devices with more advanced 3G capabilities now have access to 4G while the older devices with basic HSDPA support have stayed on 3G, decreasing the average speeds.

You can also read the top 5 posts from this blog here.



Coming back to forecasts, another ThinkSmallCell Analyst Spotlight webinar where Caroline Gabriel from Rethink research and Kyung Mun from Mobile experts provide their insight into where small cells are headed in 2017 and beyond.

Personally, I think with VoWiFi becoming common in our devices, the market for residential and enterprise eventually will decrease. I hear you say what about QoS, well see my 3G4G blog post here.

Here are the slides and video from ThinkSmallCell webinar:







Sunday, 10 April 2016

LTE-A, Hetnets and Phase Timing


I was going through my old presentations looking at frequency and phase requirements for LTE-A and HetNets. The slide above is some years old but it does summarise the requirements well. There is also an interview by Martin Kingston & Andy Sutton of EE on this topic which is available here. I would think that with 5G latencies often quoted as less than 1ms (but in practice it may be up to 10ms) would have very critical frequency and phase timing requirements.

ThinkSmallCell recently held a webinar on this topic. The write-up is available here and slides/video is embedded below. Here is something I found interesting:



In the past, a central Grand Master supplied a common signal that was hardwired throughout the network. Today, we now see distributed master clocks appearing almost everywhere. Typical requirements are for 50ppb frequency and 1.5us phase timing over the air, driven from 16ppb and 1.1us into the base station.
Frequency sync requires a Primary Reference Clock (PRC), whereas Timing sync requires a Primary Reference Time Clock (PRTC). The latter must come from a satellite GNSS source, such as GPS, and be traceable to Universal Co-ordinated Time (UTC).
The end-to-end Inter-Cell time error budget of 1.5us (1500nanoseconds) is split into three parts:
  • A time source, with an error of up to 100n
  • The transmission network, with up to 1000ns
  • The small cell (eNodeB), with up to 400ns
The transmission network may have up to 10 boundary clocks with a combined total of 500ns error. The remaining allowance is split equally between dynamic time errors and network asymmetry. It is especially important that packets travelling in each direction (uplink/downlink) incur similar amounts of delay variation – if the time taken to send and receive packets varies differently, then phase timing errors would mount up rapidly.
It is this asymmetry of packet delay variation which is the biggest problem with engineering phase timing throughout a large network.
The ITU has defined two different time profile standards related to transmitting the phase sync signal.
G.8275.1, which relies on full on-path support. Each node in the backhaul transmission network must be fully aware of the phase timing component and actively support its transmission. Each router or node would have its own boundary clock that synchronises and re-generates the timebase locally. This may be feasible for new product but would otherwise require replacement or upgrade for existing routers and backhaul transmission equipment.
G.8275.2 was recently consented and only requires partial on-path support. One or more boundary clocks are installed at the most effective points in the backhaul path, with many legacy routers/nodes being unaware of the special importance of the PTP packets.
It is crucial to take into account the existing technical infrastructure and also cost for deployment. As part of this effort, it is critical to engineer the network so that asymmetry correction can be considered.
In cases where full on path support is deployed, the mitigation of uplink versus downlink asymmetries are extremely important and usually requires a manual calibration of each link which is extremely costly.
Here are the slides with Video in the end. Video can also be directly viewed on Youtube here.




*** Edited 11/04/16 - 10.30 ***

RTT has just published an article on related topic titled 'A second look at time', available here.

Saturday, 6 February 2016

Small Cells Forecasts...


Small Cell Forum published a report last year titled 'Crossing the Chasm: Small Cells Industry 2015' in which draws on the findings of three very different pieces of research to show that, in 2015, for the first time outside the residential segment, small cells moved from trials and smaller deployments, to large-scale roll-outs, and this process of densification will accelerate from 2016 through to the end of the decade. The three studies each targeted a different base of respondents and so the plans and opinions of three key stakeholder groups – mobile operators, the component ecosystem, and enterprises – are all brought together to create a uniquely multidimensional view of the state of the market today. The report is available here to download.

ThinkSmallCell held their annual analyst forecast with Caroline Gabriel of Rethink Technology Research and Joe Madden of Mobile Experts. Their slide deck (with Video at the end) is embedded below. The webinar could also be viewed directly on Youtube here.



Feel free to add your opinion in the comments section on if you agree or disagree with these forecasts and statistics.

Monday, 19 January 2015

In-Building Options: Facts, fiction, Architecture and Solutions

In-building solutions are still a big topic of discussion. While there are neutral solutions like Wi-Fi will become more common, does it mean that cellular is no longer a necessity? To answer these questions and to make everyone familiar with the options here are a couple of videos of recent webinars.

The first one is from Alcatel-Lucent titled "Fact vs. Fiction – The Debate on In-Building Architecture Options". It discussed the three architectures (as seen in the picture above) DAS, Distributed Radio Systems (DRS) and Small Cell. Here is the video:


The other webinar (actually 2) is from ThinkSmallCell.

"Choosing the right In-Building Cellular Solutions" is a high level webinar that discusses the needs and available solutions. It also shows the decision process in selecting the right solution. The video is embedded at the end of the slides below but can also be seen directly from Youtube here.



The other older webinar and presentation by ThinkSmallCell that goes more in-depth of these In-building solutions has already been covered in an earlier blog post here.

Sunday, 26 October 2014

In-building Wireless Solutions Webinar


Last month, David Chambers from ThinkSmallCell held a webinar exploring available In-building solutions and comparing the advantages and disadvantages of each solution, also looking at the approach taken by different vendors. Worth a look. The presentation and Youtube video are both embedded below.




Sunday, 28 September 2014

HetNet Strategies with Oi Brazil


Brazil has been in limelight since the beginning of the year. Initially, the focus was on how the FIFA World Cup may fail but later on for the way everything came together at the last minute and everything worked. From a technology point of view, WiFi was a big saviour in the stadiums, allowing good connectivity for everyone wishing to add the things they liked on social networks as soon as they can.


An example was this chart tweeted by Ruckus Wireless to proudly show what their achievement was with stadium WiFi.



Recently, Maravedis-rethink conducted a webinar with the Brazilian operator Oi, regarding their HetNet strategies. The video for the relevant part is embedded in the end. Two slides caught my attention. The first was about the different technologies and their concerns (above). For example for a HetNet to be successful, all components should synchronised and have a strict time accuracy requirements. The Backhaul & Fronthaul requirements are equally interesting for different cases.



The second interesting slide is the final one where they have their wish list to what they would like to do in near-term and long-term. WiFi features in all the scenarios except for the rural case (as expected). Anyway, here is the video:



You can download the slides from Slideshare here.

Monday, 25 August 2014

Case Study: Deployment scenarios with DAS, RRH, Small Cells and Wi-Fi


I attended an interesting webinar (details in the end) from Infonetics Research, EXFO and ExteNet Systems where one of the areas of discussion was around which technology for which scenario. The four main technologies being considered was DAS, RRH, Small Cells and Wi-Fi. There was some interesting deployment examples that I have embedded below:



NOTE: If the slides are not working, please view it on Slideshare - slides 21 to 24

To watch the webinar recording and download slides, please follow this link: http://w.on24.com/r.htm?e=783410&s=1&k=CD70E2F6D98C3E67A3B5A1936E23DB13

Saturday, 31 May 2014

DAS or 'Small Cells' for Indoor Location


There was a recent webinar by Maravedis-Rethink & EJL. The slides are available on Slideshare here. I think there were some good points made about using DAS or Small Cells for the Indoor environment. Here is the youtube clip. You can drag the pointer to the beginning, to listen from the start.



Wednesday, 5 February 2014

Small Cells and WiFi Forecast 2012 - 2018

I have been following and having some interesting discussions on a Linkedin group where the main argument is that Small Cells may never really take off as its not a good solution and doesn't make a good business case. I think that kind of discussion is best left to do on Linkedin.

ThinkSmallCell held a webinar recently inviting couple of leading experts to discuss their forecasts for Small cells. The webinar slides and videos are embedded below. Here is a quick comparison of what these independent leading experts had to show:

The main point to note above is that we will hopefully hit 1 million public access small cells probably around/after 2015. My view on why operators have been slow in deploying small cells have been mainly to do with interference management. As we know, Small cells are deployed for Coverage and Capacity and is mainly deployed in Co-channel (same carrier as Macro). If there is no or little coverage, Small cells deployment is not an issue. With higher frequencies, the reception in the houses goes down so deploying Femtocells make sense. With public access small cells, interference (especially on 3G) has to be managed. Surprisingly the practical results for co-channel public access outdoor small cells deployed for capacity purpose is not too bad but there is a no coverage area created as a result of interference at the edge of the small cell. This can cause handover issues.

In LTE-A, Interference techniques like (f)eICIC will help handle these situations so I wont be surprised if there are lots of deployments next year with this interference management capability.

The main thing to note is that WiFi will play a huge part for the connected devices of the future. Most of the small cells deployed with also have a WiFi capability so operators can use that to offload traffic from the cellular on Wi-Fi.

My understanding is that in future we will see Macro cells mainly serve high-mobility connections (including connected cars) and Small cells and WiFi will be used for low mobility and fixed access. I guess the real advantage of cellular over Wi-Fi in this low mobility scenario is that since Wi-Fi is unlicensed, there could be interference from many unpredictable sources. Licensed cellular bands dont generally have this issue.

Anyway, the presentation and video from webinar is embedded below:






Sunday, 20 October 2013

New opportunities in Carrier Wi-Fi & Wi-Fi offload


Interesting webinar from Maravedis-Rethink exploring the new opportunities with Carrier-WiFi and Offloading. Embedded below is the video and presentation:



Tuesday, 20 August 2013

Enterprise Small Cell Architectures

Deployment in enterprise is a challenging task for the operators but it has many benefits hence this is one of the areas they have been working very hard to get it right.
Release 2 from the Small Cells Forum, later this year will provide more useful insights into deployment of Enterprise Small Cells or Femtocells.

One such challenge for Enterprise small cells is the architecture for the enterprise deployments. Handovers play a big part and special care has to be taken to make sure they are seamless with little or no break during handovers.

Embedded below is a webinar from ThinkSmallCell from not so long back which deals and explains the issues. The last slide is the video of the webinar, in case you have enough patience to go through it. Finally, you can also download the whitepaper from Spidercloud on this topic here.