Showing posts with label Site Sharing. Show all posts
Showing posts with label Site Sharing. Show all posts

Wednesday, 21 December 2022

Details on India's First Neutral Shared RAN Solution

Back in August, RailTel and CloudExtel partnered to launch India's first Shared RAN solution for congested locations with the objective to enhance the telecom user experience. A press release said:

RailTel and CloudExtel carried out the successful pilot of this project in partnership with Bharti Airtel, Vodafone Idea, Nokia, and the Telecom Infra Project's NaaS Solutions Group, with vital support from the Railways, in one of the most network stressed locations, Mumbai Central railway station. The outcomes have been impressive with 5 times increase in average user speed (from 3Mbps to 15Mbps) for both Bharti Airtel and Vodafone Idea, while the data consumption jumped up by 20%.

At Telecom Infra Project's Fyuz 2022 conference, Kunal Bajaj, CEO & Co-Founder, CloudExtel provided details on this in a breakout session dedicated to Neutral Host Network-as-a-service (NaaS) business model. His part of talk is embedded below and you can also check out his presentation from the main stage here

In an interview with Economic Times earlier this year, Kunal pointed out:

How many small cell sites are there in the country at present?

Small cells are not just for 5G rollout. There is a substantial 4G component of it today. As per industry standards, there are over about 30,000 odd small cell sites that have already been rolled out. Of that, about one-third to one-half of those sites have been rolled out by Reliance Jio. The balance have been rolled out by Airtel and Vodafone, and of that we have the largest market share. We have done over 4,000 sites for these two telcos, and there are all primarily 4G sites.

What’s the demand like for 4G small cells?

Even in the 4G space, month on month, year on year, data consumption has continued to grow pretty substantially. We are at 19 gigs per user, per month today, and if I remember correctly, we were at 12 gigs just a year ago, and much lower than that before. And this is all coming from 4G. 5G is not there yet, and what that really demonstrates is the reliance that users have on wireless connectivity. We have don’t much fixed line infrastructure today in India to really speak of. 25 million fixed line broadband users is nothing compared to the over 500 million 4G subscriptions. This growth in 4G data densification, even with 5G auctions coming up, will continue for the next two years.

Going forward, will these 4G sites be converted to 5G, or that will be part of a separate infrastructure?

If you see what has happened historically, when we went from 2G to 3G, and more relevantly, when we went to 3G to 4G, the 4G sites came up wherever you have very high capacity usage on 3G. 3G was not taken away, but those sites were upgraded to dual technology, by upgrading the equipment and adding an additional 4G radio to bring up 4G traffic from those sites. And I think that’s exactly what we are going to see in the 5G environment. The good thing is a lot of telecom operators learned from the 3G to 4G transition, and started investing very early in hardware that would be upgradeable to 5G.

Obviously the radio band is different, and there’s nothing really you can do in software to make the same radio to radiate multiple bands. So there will be investment. That happens in radio ugprades, but the core base station technology, the back haul, switches and things like that, a lot of that is now software upgradeable, and therefore it is going to be hopefully a much easier transition from 4G to 5G.

So what’s your projection of the number of small cells that will come up with the 5G rollout from August?

Some of the industry projections that we see from a lot of analysts and consulting companies is that India needs somewhere around 2,50000 small cell sites in the next five years across all three of the major operators. What that basically means is over 5-6 lakh unique small cells to be deployed. So that’s a tremendous amount of growth that we are going to see. The first one or two years from now is primarily going to be 4G, but then after that, the huge acceleration, the hockey stick curve is going to come from 5G deployment.

What is the kind of investments you are looking at in the next five years to cater to this demand?

We are talking of hundred of crores, just for us. We are looking at our base growing from 4000 small cells to 40000 small cell sites in the next five years. That’s a conservative projection, obviously, we believe and hope that we can do a lot more than that, but that will require well over 400-500 crores for us to really pull that off, and that’s where the opportunity to scale and build a substantial network. Today, when you compare us to the mainline tower companies, we are still a startup and in the beginning of our first innings, so we have a long way to go.

There certainly is a bright future for Neutral Host Network-as-a-service (NaaS), especially in country like India, with a large population of young people.

Related Posts

Tuesday, 12 May 2020

Passive and Active Infrastructure Sharing

I have written about Network sharing before here. In that particular tutorial, my main focus was to explain Active Infrastructure / Network Sharing mainly. So the focus was on two most common approaches, MORAN and MOCN. The Passive Infrastructure / Network Sharing can be a bit involved as well depending on the agreement between the different parties. Here, let's focus on this.


Quoting from the GSMA whitepaper:

Passive infrastructure sharing is where non-electronic infrastructure at a cell site, such as power supply and management system, and physical elements such backhaul transport networks are shared. This form can be further classified into site sharing, where physical sites of base stations are shared and shared backhaul, where transport networks from radio controller to base stations are shared. Passive infrastructure sharing is the simplest and can be implemented per sites, which enables operators to easily share sites and maintain their strategic competitiveness depending on the sites shared. Operation is also easier with this form of sharing because network equipment remains separated. However, the cost-saving potential of sharing is limited relative to other forms of sharing.

Active infrastructure sharing is sharing of electronic infrastructure of the network including radio access network (consists of antennas/transceivers, base station, backhaul networks and controllers) and core network (servers and core network functionalities). This form can be further classified into MORAN (Multi-Operator Radio Access Network), where radio access networks are shared and dedicated spectrum is used by each sharing operator, MOCN (Multi-Operator Core Network), where radio access networks and spectrum are shared, and core network sharing, where servers and core network functionalities are shared.

As in the case of site sharing, MORAN and MOCN can be implemented per sites and enables strategic differentiation. However, operation of network equipment needs to be shared (or at least issues must be shared with participants) and therefore increases the complexity of sharing relative to site sharing. The cost-saving potential is greater than site sharing. Core network enables greater cost-saving potential but is complicated to operate and to maintain strategic differentiation. It is important to note that core network sharing has not been popular and only a few cases have been suspected to be so.

The pros and cons for different sharing types can be seen in the table above.

This old presentation from 2014, explains the pros and cons of the two passive sharing approach nicely


Passive sharing: Site + tower sharing

  • What is shared?
    • Cell site
    • Shelters, towers
    • Power, A/C
    • Security for buildings and systems
  • Potential advantages
    • Cost sharing for site acquisition, infrastructure, lease, maintenance, power
    • Reduced network footprint
  • Potential drawbacks
    • Entrants may not benefit if they lacks own sites to offer
    • Costly to negotiate and implement when established networks are being consolidated


Passive sharing: Backhaul

  • What is shared?
    • All elements of site sharing
    • Backhaul links: cables/fiber, leased lines, microwave
  • Advantages
    • Cost savings in equipment cost
    • Cost saving in deployment
      • Joint-digging of trenches (70-80% of costs)
      • Microwave links – reduced license fees
    • Faster deployment timeframe


The presentation has examples from different parts of the world and also pros and cons of active sharing. Check it out here.

Related Posts:

Sunday, 10 June 2018

Small Cells growing fast, just not in Europe


Small Cell Forum held a workshop in Beijing, China last month to gain an understanding of China’s perspective on densification on the path to 5G. Complete report is available here. From the report:

APAC leads the world in network densification, as is clear from recent market data and forecasts out to 2025. New deployments in South East Asia alone are set to be greater than the sum total of those in the rest of the world until 2025. APAC can be characterized as experiencing two phases of growth, with a small plateau from 2019-2021 as 5GNR small cells are being commercialized. Our survey of MNOs reveals that densification in APAC is primarily capacity driven, to ensure data services maintain their quality of experience as mobile traffic volumes continue to grow. CMRI (China Mobile Research Institute) predicted its data traffic would grow 8x from 2016-2020 and 119x from 2016-2030. Ericsson predicted 8x global growth from 2016-2022, and others cited Cisco VNI’s 7x global growth 2016-2021, dominated by APAC.

A summary presentation from the event is embedded at the end.

As per Mobile World Live's report from Small Cells World Summit last month in London:

Kicking off the event, David Orloff, chair of the Small Cell Forum said: “Small cells are integral for 5G, and the reality is that there are capacity needs, there are latency needs, and both of these aspects can be driven through integration with small cells.”

He observed: “Europe is lagging. We need a new mindset, we need to look at different ways on this – in the 5G era we do have densification needs in the entire global industry, and we need to work [out] solutions to ensure the framework is there and the foundations are there. We need to think differently.”

Speaking about the global rollout of small cell technology, he continued: “We see global synergies and global barriers, but we also see regional barriers that are delaying densification. A good example in the US is cell siting; in India there is a cost target that has to be met; in China there’s mindsets around operations; and in Europe there is a question around the business case and whether it is profitable to do densification.”

“Asia is cranking, North America is doing well, really preparing that framework and foundation and starting to deploy cells that are NR capable, so that we have a structure in place so that we can turn on 5G, working on mmWave. Europe is pretty far down.”

Notwithstanding this lag, Small Cell Forum forecasts an increase in the number of non-resident small cells deployed in Europe from 52,000 in 2017 to 310,000 in 2022. But mobile operator deployments are not the only game in town: enterprises are an important driving force due to quality of service and IoT requirements, and technologies including MulteFire and CBRS are easing the way for new players.


According to Crown Castle, in a report in Fierce Wireless:

The small cell market continues to expand, and Crown Castle’s Mike Kavanagh pointed to two big factors as evidence: Small cell buildouts are starting to happen in smaller, tier 2 markets, and some small cell locations are now serving more than one carrier.

Small cells are “a big part of every big carrier’s build,” he said. “It’s a good time to be in the space.”

In the early days of small cells half a dozen years ago, Kavanagh said that a major installation would cover 50 nodes in a city. Today that number is reaching 2,000—and in some dense markets it can grow to 7,000. “You’re utilizing small cells as a much bigger element of the network build,” he said. “You’ve got to have that tower layer. And you’ve got to have small cells.”

He said in some deployments Crown Castle is seeing 2 to 4 small cells per mile, and in some dense, urban areas that number grows to 7 to 12 per mile. Kavanagh, the company’s SVP of sales and its chief commercial officer, said that Verizon kicked off the push toward small cells, but today all of the nation’s largest wireless operators are embarking on major small cell deployments.

And a big driver of revenues for Crown Castle is the growing trend toward multitenant small cells, which Crown Castle calls “leasing up.” Essentially, Crown Castle typically builds a small cell for one carrier’s equipment, but increasingly the company is adding equipment for a second carrier to that location, thus deriving more revenues per small cell site. Such site sharing is typical in the macro tower business.


Finally, here is summary of presentation from SCF looking at APAC in detail with regards to drivers and barriers for densification.