Showing posts with label Operator SK Telecom. Show all posts
Showing posts with label Operator SK Telecom. Show all posts

Tuesday, 19 November 2024

SK Telecom's Vision for Future Telco Infrastructure in the AI Era

Last month, SK Telecom released a 6G white paper that explores the evolution of wireless and wired infrastructure through the convergence of AI and telecommunications. The white paper highlights how Telco Edge AI infrastructure can redefine the value of network systems by enabling real-time data processing alongside AI-driven services. You can find my detailed blog post on the white paper here.

Dr. Takki Yu, Vice President of the Infra Tech Office at SK Telecom, leads R&D efforts across end-to-end mobile communication technologies. His work spans Radio Access, Core, Transport, Devices, Location, and Network AI. Dr. Yu’s primary focus is on advancing mobile communications, including 5G and Beyond 5G (6G) systems, as well as innovations in network virtualization, cloud, location-based quantum security, and AI integration. Notably, he played a key role in the successful commercialization of the world’s first 5G network in Korea and continues to lead the charge in developing Beyond 5G and 6G technologies.

At the Brooklyn 6G Summit (B6GS), Dr. Takki Yu delivered a keynote presentation titled "The Path to AI Telecommunications Infrastructure Evolution as Future Architecture." In his talk, he shared SK Telecom's vision for the future of telco infrastructure, reflecting on the expectations of the 6G era and the transformative shift towards AI-driven telecommunications infrastructure.

Related Posts

Friday, 5 February 2021

SK Telecom’s 5G MEC Status and Plan

 

Back in December, at '5G Connected Edge Cloud for Industry 4.0 Transformation – 2020 Spotlight Series', Kang-Won Lee, Vice President, 5GX Cloud Labs, SK Telecom gave a talk on SK Telecom’s 5G MEC Status and Plan. 

It was interesting to see that while the industry has changed the definition of MEC to Multi-access Edge Computing, SKT still refers to it as Mobile Edge Cloud. As SKT has now crossed over 10 million 5G subscribers, they have noticed a lot of demand for Edge compute capability. While there is a demand, enterprises, factories, buildings, etc. are not interested in managing their own infrastructure. They would rather somebody else provides the services. This is where SK Telecom sees new business opportunities in the future. Along with the high throughput, high capacity and low latency, security and privacy is very important as well. 

As the services move to edge, there is more predictibility on QoE and the latecny can be reduced to as low as 1ms which is a huge benefit to critical applications. While they are not there yet, they are moving towards that goal. There is also a huge opportunity for public cloud providers here.

SKT has 2 main deployment models as can be seen. The public edge where they have data centres distributed throughout the country and can hence provide MEC services to 5G users nationwide. On the other hand, On-site edge is useful for providing private MEC services to enterprise and government users. Ideal for smart factories, smart hospitals, offices, etc. In both cases, SKT are open to collaborate with the users, communities, open source, big companies, etc.


Finally, SKT MEC Architecture can be seen in the picture above. The 5G network and 5G-MEC gateway can be seen which is connected with the compute and storage resources which are in turn connected to SKT tech assets or other operator platform or public cloud platform as required. The video provides more details including the SKT MEC Architecture details.

The slides are available to the registered users here and the talk is embedded as follows:

Related Posts:

Tuesday, 29 October 2019

SK Telecom's In-building 5G NR Repeaters and 'Layer Splitter'


In-building coverage is the new battleground in South Korea. According to this report by Korea Times back in August

SK Telecom, KT and LG Uplus, which have been in cutthroat competition to improve the quality of their fifth-generation (5G) network services, are now in a race to boost 5G data speeds inside buildings.

Their move comes amid growing complaints over disappointing 5G network coverage since the next-generation mobile network services were launched in early April.

SK Telecom said Wednesday it has completed the development of the "5GX In-building Solution" that is capable of doubling the speed of 5G data transfer inside buildings and effectively dispersing data traffic to prevent overload on base stations in crowded areas such as shopping malls and subway stations.

The nation's top mobile carrier said the new technology will be applied to its commercial 5G networks after the third quarter of the year.

"We expect 80 percent of data traffic to be from inside buildings in the 5G era," said Park Jong-kwan, who heads 5GX Labs at SK Telecom. "We will continue to give efforts to provide users with seamless, high-quality 5G services inside buildings and in crowded areas."

The company said its new system features "Active Antenna" technology that allows 5G small cells, which refer to small indoor base stations, to be equipped with eight transmission and reception antennas.

This will double the speed of 5G data transfer as existing indoor base stations are capable of operating four transmission and reception antennas.

KT has also been working hard to expand 5G coverage inside buildings.

In May, the nation's largest broadband service provider and second-largest mobile carrier interlocked 5G repeaters with commercial 5G networks in cooperation with small and medium business partners.

Installed inside buildings where radio waves from base stations can hardly reach, the device helps improve the quality of 5G services.

KT is in charge of expanding 5G coverage in 95 large buildings out of 119 nationwide, such as airports and KTX stations, in a joint project by the three mobile carriers.

LG Uplus, the smallest player, also has been active in installing repeaters in small and medium buildings and underground parking lots to expand 5G coverage.

The company is planning to expand the application of beam-forming and multi-user MIMO (multiple-input and multiple-output) technologies to its 5G networks nationwide.

Back in May, SK Telecom won SCF Small Cell Awards 2019 in the category of “Commercial Small Cell Design and Technology” for commercializing the world’s first 5G NR RF repeater. According to the press release:

SK Telecom won this year’s SCF Small Cell Awards for developing and commercializing, for the first time in the world, two different types of 5G NR RF repeaters operating in the 3.5GHz band in 2018. 5G RF repeaters, which amplify 5G radio signals to allow them to travel greater distances, are used to enhance 5G service quality by improving coverage for in-building areas.

SK Telecom’s RF repeater is built with 5G NR standard-based Time Division Duplex (TDD) Synchronization detection technology, which enables a more efficient use of limited frequency resources. In addition, the 5G repeater provides wide bandwidth support and operational optimization features.

Going back to the Small Cells World back in May, SK Telecom presented their solution but the presentation was not shared. Here are some relevant pictures from their presentation:


Source: Phil Kendall

As can be seen in the picture (click to enlarge), depending on the use case and location, the InBuilding solution would change from Small cells to AAU and Repeaters.

Source: Dean Bubley

As you can see in the picture above, the 3.5/28 GHz layer split solution improves capacity of the building by creating multiple layers to improve the capacity. There is a new press release on this topic, which is covered in the post later on.

Source: Dean Bubley

The Speed Repeater above and the RF Repeater below is backhauling on the existing macro, similar to the In-band backhauling (IBBH) I have described earlier or Sprint/Airspan MagicBox.

Source: Dean Bubley

In a recent press release, SK Telecom announced that they have expanded the 'Layer Splitter', a dedicated equipment for 5G inbuildings, to 1,000 buildings, starting with WeWork Seolleung Branch (Gangnam-gu, Seoul). SK Telecom customers will be able to use 5G services twice as fast as existing in-building equipment in major domestic buildings such as shopping malls and department stores.

'Layer Splitter' is the equipment based on '5GX In-building Solution' developed by SK Telecom in the world in August. If existing indoor equipment is equipped with two antennas for data transmission and reception, 'Layer Splitter' is a four-integrated antenna equipment that can process more data simultaneously in the same frequency band.

It also integrates several signal conversion devices * that go through for communications services. The integrated device is half the size of the device as before, and data transfer rates are faster with fewer signal conversion steps. In addition, the integrated device is placed forward in the base station and only the antenna is installed inside the building, enabling quick action in the event of a problem without visiting the building.

※ Previously, it had to go through four-step signal conversion (digital signal → optical signal → base signal (IF) → optical signal → wireless signal (RF)), but 'layer splitter' Combined 'matcher' and 'donor', a device that converts the base signal (IF) into an optical signal

SK Telecom plans to expand in-building coverage centered on 'layer splitters' in buildings with a large number of floating populations such as large shopping malls and department stores. 

Wework, the first construction site, is a shared office where several ICT-related companies collaborate and expect various business models based on Korea's best 5G infrastructure. In particular, SK Telecom and Wework have been working together since last year's strategic partnership, including building 5G infrastructure.

Chang-Kwon Chung, head of infrastructure engineering group at SK Telecom, said, SKT customers can experience differentiated communication quality with the only equipment dedicated to 5G in-building. “In-building will be able to efficiently accommodate in-building traffic that will continue to increase in the 5G era. "We will continue to advance our proprietary solutions."

Hopefully we will learn more about this solution in near future.


Related Posts:

Saturday, 22 December 2018

ETRI working on Small Cell Base Station in a Backpack and 5G Indoor Femtocells


Came across this slightly old news in March issue of ETRI Webzine:

Following the development of the LTE small-cell base station SW in 2016, ETRI announced on February 7 that it successfully developed a SW supporting LTE-TDD dual connectivity.

These technologies are evaluated as core technologies for future 5G communication through upgrading of conventional SW technologies, since they may be applied to buildings, stadiums, and homes.

The technologies are suitable for the locations where the traffic is rapidly increased, such as stadiums, department stores, disaster-stricken areas, and military camps. The small cells may be attached, like a wireless LAN AP, to walls inside and outside buildings, utility poles, and communication antennas, or may be carried in the form of a backpack. The research team explained that the size of the small-cell was minimized as the size of a wireless LAN AP for indoor purposes and as the size of a shoe box for outdoor purposes. The small-cell backpack weighs about 10 kg.

These accomplishments will remove the communication shadows and blind spots between cells, and will help to develop independent technologies by replacing the conventional products from other countries.

In a more recent news on this topic (September 2018):

Following the successful localization of software for LTE Small Cell, which is used in the same manner as wireless access points operating within tens of meters to 1 km, while serving as a small base station, ETRI researchers began research to localize small cell equipment essential to establishing 5G infrastructure going forward. The focus of the research is on the development of technology capable of increasing the maximum transmission speed (eMBB), which is one of the most critical criteria for 5G technology, and especially the perceived transmission speed on the user side.


According to Yonhap News (translated by Google translate):

SK Telecom will be participating in 'Intelligent 5G Small Cell Technology Development Task' together with Korea Electronics and Telecommunications Research Institute (ETRI), domestic wireless communication equipment company Teltel and U Cast. The project is sponsored by the Ministry of Science, Technology and Information and is organized by ETRI.

In this project, SK Telecom sets up requirements for small cell system development. In addition, ETRI and equipment companies provide a test environment for small cell equipment verification. ETRI develops software, and Contela and Yu Cast develop hardware.

SK Telecom and other collaborative research groups plan to open API (application programming interface) to small cell. This reduces the burden of SMEs and start-ups to develop their own interfaces.

SK Telecom and ETRI are planning to develop international standard technology and secure original patents in the small cell field based on research results.

SK Telecom announced on February 23 that it will participate in 'Intelligent 5G Small Cell Technology Development Task' together with Korea Electronics and Telecommunications Research Institute (ETRI), Kontela and U Cast of domestic wireless communication equipment. A joint research team is taking a commemorative photo in front of the first workshop at Daejeon ETRI fusion technology research and production center. 2018.8.23

SK Telecom Park Jong-kwan, director of Network Technology, said, "In the 5G era, 80% of total traffic will occur indoors." "We will take the lead in 5G technology development so that customers can fully enjoy virtual reality and hologram services."

Tuesday, 5 August 2014

New types of HetNet's Cell coordination

Came across this HetNet Infographic from Ericsson here. They are proposing something interesting as can be seen in the picture above. From the infographic:

Macro for downlink, micro for uplink
In the imbalance area, the downlink signal from the macro is the strongest, because it transmits at a much higher power, whereas the uplink signal from the pico node is much stronger, because it is closer. This provides the user with significantly higher uplink speeds than would be possible with macro coverage alone.
So if we have a macro with an overlay of small cells then the Macro can be used for DL and Small Cells for UL. This scheme is a counterintuitive to what I would have thought. Since there is a higher requirement in DL as opposed to UL, the uplink could be received by Macro and the DL could be sent from pico node. The macro also has bigger antennas and can process weak signals from the UE.

SK-Telecom-Elastic-Cell-edit

Ericsson and the South Korean operator, SK Telecom recently also demonstrated 'Elastic Cell'. As per Telecom TV:
The telco has confirmed that Elastic Cell technology is based on the 3GPP Release 11 CoMP specification, but with improved scheduling, energy efficiency, and cost efficiency. SK Telecom says it has applied downlink CoMP since early 2012 and uplink CoMP in April 2014, and both technologies are proprietary technology. Because coordination between networks will still be very important in 5G technologies, SK Telecom expects that Elastic Cell will become a key enabler for 5G.


Another similar approach that is proposed by NTT Docomo is the 'Phantom Cell' concept as described here. Their proposal is to separate control and user planes. Macro used for signalling (C-plane) and Small cells in higher frequencies for data (U-plane)

Finally, we also have the SK Telecom's SUPER Cell concept and blogged here. There is a lot of cell splitting in this but again we have the main frequency (lower) being able to do both control and data while the higher frequency is only to do data. Sounds a bit like the Phantom Cell and 'New Carrier Type' as blogged here before.

Are there any other types of cell coordination being discussed. Do you have any opinion on them? Feel free to add comments.

Tuesday, 11 February 2014

LTE C-RAN / Fronthaul Architectures


Its been a while since I talked about C-RAN on this blog. Meanwhile on the 3G4G blog, a presentation by Orange labs have proved to be very popular. Netmanias have posted couple of slideshares on the C-RAN architecture. They are as follows:



The first one is NTT Docomo's advanced C-RAN architecture. I have posted a presentation on Slideshare as well on this topic. It can be viewed here for more details.




The next one is the Fronthaul and Backhaul architecture by SK Telecom. I have a slideshare on a similar topic by SK Telecom here. In fact a post on 3G4G blog from the iGR whitepaper here is an interesting read on this topic as well.

Sunday, 17 November 2013

SUPER cell, by SK Telecom (SKT)


This looks very interesting and similar to some other concepts that I have discussed on 3G4G blog. One of them is the Multi-stream Aggregation (MSA) that allows aggregation of data from different radio access technologies. Another is the Phantom Cell concept, proposed by NTT Docomo, where control plane is handles by one cell and data by another. Small cells would generally do only data or larger cells would do control plane. Of course you can have different combinations as can be seen in the picture above.

This also reminds me of the earlier post about Super Macros. Is this SUPER cell a Phase 2 of the Super Macro kind of architecture? Or is it just a future 5G concept? Please feel free to add your comments.

Here is the embed of their complete presentation:



Wednesday, 31 July 2013

SK Telecom: Commercial deployment of LTE Femto cell


SK Telecom does not fail to impress with their aggressive roll-outs and impressive solutions to challenging problems. One such presentation from the Small Cells World Summit 2013 in London is embedded as follows:





Another presentation from late last year is available here.

Tuesday, 19 March 2013

Are we going to see more of Cloud RAN (C-RAN) in future?


China Mobile was in news a few times the last month with regards to Metrocells and C-RAN. The first item from TelecomAsia:

Alcatel-Lucent has unveiled a new TD-LTE metro base station for its lightRadio product line that will be deployed by China Mobile, which co-developed it.
 
The compact lightRadio Metro Radio – revealed at this year’s Mobile World Congress in Barcelona – houses two lightRadio cubes, fully integrated with a directional antenna, with an output of 5W.
 
Alcatel-Lucent says the design allows it to “provide the coverage normally associated with a much bulkier, heavier remote radio unit linked to an external antenna via an RF coaxial cable.”
 
China Mobile will deploy the 2.6 GHz Metro Radio in its TD-LTE network in Shanghai, Nanjing and Qingdao – specifically, in busy indoor and outdoor locations like shopping centers where macro coverage can suffer either from building density or too many people trying to access the network.
 
The Metro Radio is the first product to result from a co-creation agreement signed by Alcatel-Lucent and China Mobile just over a year ago to conduct joint development and test activities on lightRadio TD-LTE projects.

An article on the same topic in Rethink-wireless throws a bit more light:
The TDD lightRadio Metro Radio houses two of ALU's now-famous 'cubes' (highly compact radios which can be installed on lamp posts) integrated with a directional antenna. This enables a level of coverage which would normally require a far larger remote radio unit linked to an external antenna via cable, claimed ALU.
China Mobile's first trial TD-LTE network using the lightRadio product covers 13 cities including Shanghai, Nanjing and Qingdao. The base station will be deployed in busy indoor and outdoor locations, such as retail malls and sports stadia. As well as C-RAN, Mobile also plans to deploy compact metrocells combining 3G, 4G and Wi-Fi on a massive scale in future.
Another one:
ASOCS Ltd., a Silicon IP provider of software defined radio solutions and CMRI, Research Institute of China Mobile (CMCC) Ltd., the world's largest mobile operator, have signed a strategic memorandum of understanding for the joint development, commercialization, testing and deployment of large-scale baseband processing units for China Mobile's next generation Cloud-RAN network.
Earlier trials undertaken by leading mobile operators, identified the bottleneck of Centralized Base-band Units, consisting of general purpose CPU, to perform major baseband calculations in cost and power efficient management. The solution was to introduce significant offloading capabilities of such calculations with highly specialized Modem Processing Units (MPU).
Today there is a growing understanding in the industry that such MPU should support a wide range of system partitioning, topologies and real time system performance, including large scale Collaborative Multi-point communications (COMP) and massive MIMO. Since communication algorithms are evolving over time, and since the C-RAN concept provisions on-the-fly reconfiguration of the BBU to support a variety of mobile communication standards, an MPU solution which is re-configurable at runtime has a great advantage over traditional hard-wired designs.
China Mobile (CMCC) has been pushing the cloud agenda for a long time. A whitepaper from them on the same topic is available here.

Picture source: NTT Docomo press release

NTT Docomo is another operator who believes very much in C-RAN. Occasionally it refers to the C-RAN as Centralized RAN. There were couple of announcements from their side:

The first one was a press release from Docomo here:
NTT DOCOMO, INC., Japan’s leading mobile operator and provider of integrated services centered on mobility, announced today it will begin developing high-capacity base stations built with advanced C-RAN architecture for DOCOMO’s coming next-generation LTE-Advanced (LTE-A) mobile system. The new architecture will enable quick, efficient deployment of base stations, especially in high-traffic areas such as train stations and large commercial facilities, for significantly improved data capacity and throughput.
Advanced C-RAN architecture, a brand new concept proposed by DOCOMO, will enable small “add-on” cells for localized coverage to cooperate with macro cells that provide wider area coverage. This will be achieved with carrier aggregation technology, one of the main LTE-Advanced technologies standardized by the Third Generation Partnership Project (3GPP). The small add-on cells will significantly increase throughput and system capacity while maintaining mobility performance provided by the macro cell.
High-capacity base stations utilizing advanced C-RAN architecture will serve as master base stations both for multiple macro cells covering broad areas and for add-on cells in smaller, high-traffic areas. The base stations will accommodate up to 48 macro and add-on cells at launch and even more later. Carrier aggregation will be supported for cells served by the same base station, enabling the flexible deployment of add-on cells. In addition, maximum downlink throughput will be extendible to 3Gbps, as specified by 3GPP standards.
Another one from Rethink-wireless here:
Japan's Docomo has selected the vendors, Nokia Siemens and Panasonic, which will upgrade its network with certain LTE-A features like carrier aggregation.
This is a good win for NSN, which has not featured as heavily as Ericsson and Alcatel-Lucent in the most advanced LTE roll-outs to date. Breaking into the Japanese carriers is tough, since Docomo in particular tends to rely on trusted local suppliers with which it has long-standing development alliances.
Panasonic, of course, falls into that category - it has worked with the operator since 2007 on LTE network infrastructure, but NSN was also brought into that project at an early stage and its efforts have borne fruit. The European vendor will supply its Liquid Radio multiple standard RAN. Like Docomo's LTE network, there will be heavy use of remote radio heads, with baseband processing virtualized in the cloud, as well as increasing roll-out of small cells to increase indoor and outdoor capacity. NSN says the base stations will deliver capacity of 300Mbps.
In future, the two vendors will support Docomo's own particular definition of Cloud-RAN, a concept which is being pioneered in China, Japan and South Korea, and which takes the idea of remote radio heads and shared basebands to a new level. Docomo says it favors C-RAN because the cell site equipment, consisting of radio and antenna, is compact and low power, and so can be deployed quickly in high traffic areas like train stations. It calls its architecture Advanced C-RAN and this will rely on some HetNet principles, including a separate layer of 'add-on' small cells adding localized capacity while cooperating with macrocells.
In the C-RAN, there will be high capacity master base stations supporting multiple macrocells plus the local small cells. The master BTSs will handle up to 48 macro and small cells at launch and more later. Carrier aggregation will be supported for cells served by the same base station. The carrier says it will boost peak downlink speed to 3Gbps over time, hitting 'true 4G' and 3GPP LTE-B standards.
If you are wondering what 'LTE-B' or the 'true 4G' is, see this post here.


In South Korea, both KT and SK Telecom have announced C-RAN strategies for their LTE deployments, dubbed Cloud Communications Center (CCC) and Smart Cloud Access Network (SCAN) respectively. As early as June 2011, SKT had deployed 1,772 RRHs and 609 baseband units within its LTE network in capital Seoul. The lower amount of baseband units suggests an average of almost three RRHs per baseband unit, assuming each RRH is single sector.


The above two pictures are from the Small Cells Standardization presentation here.

An old article from Rethink-wireless mentions the following:
This is the central concept of C-RAN, deconstructing the traditional base station to leave a low power unit at the cell site, integrating antenna and radio, while centralizing all the baseband activity and supporting hundreds or thousands of sites flexibly from the cloud. KT calls its LTE approach its Cloud Communications Center (CCC) architecture, and it has been co-developed with Samsung and Intel. The latter is leaping on the opportunity to bring its expertise in servers and data centers to the telco network, and in this case its platforms are integrated with Samsung modems to create a centralized exchange for signals communications processing. This is linked by fiber (essential for C-RAN) to the cell sites.
As seen in vendor strategies like ALU's lightRadio and Nokia Siemens' Liquid Radio, the CCC also harnesses virtualization technology so that the central processing resources can be allocated flexibly according to the peaks and troughs of demand in different sites. Yung Kim, senior EVP head of strategy planning at KT, told TelecomAsia: "For example, at a sports stadium you can dynamically allocate more resources for that area during a game on a millisecond basis." The design also improves coverage at the cell edge, he added, claiming twice the capacity per cell, on average, because of better improved edge management.
The CCC architecture can manage 144 base stations per server and accommodate 1,000 servers in each data center, all them acting as a central processing entity. Most tasks are run on off-the-shelf processors rather than dedicated ASICs, also a key trend to reduce the cost of data networks and to converge the norms of the IT data center with those of telecoms. The performance and power advantages of modern computer processors are now up to the task of massive telecoms networks, believe carriers like KT, hence the intense interest of Intel, although some ARM-based chip vendors like Marvell and Freescale are also pushing from the network into the data center.
Do you have an opinion on the C-RAN architectures in the future? If yes, we would like to hear.