Sunday, 17 January 2016

Small Cells & Wi-Fi in the pavements & roads


Back in October last year, Thinksmallcell reported that Vigin Media in UK is deploying WiFi in pavements.



ISPreview reports that:

Ordinarily most operators prefer to install WiFi access points above ground, not least because it helps the 2.4GHz signal to propagate, but telecoms infrastructure owners like Virgin Media have a lot of manholes around the place that can also be used (makes it easier to tap directly into their core capacity links) and apparently this approach can still cover an area of up to 80 metres.

The use of a submerged rainproof access point, which sits beneath a specially developed resin cover, is certainly a different twist on the usual deployments. Never the less Virgin Media are also using plenty of traditional access points too, which have been discreetly installed on local street furniture.


Wireless antenna maker Kathrein has teamed with Ericsson and Swiss operator Swisscom to develop an in-ground antenna system that will help provide additional wireless coverage in densely populated areas. The technology, called the Kathrein Street Connect, was developed to help operators deploy additional cell sites in places where site acquisition is difficult due to zoning issues.

Kathrein designed the antenna while Ericsson provided the radio. The rugged solution was designed to withstand deploying in streets with heavy vehicle traffic. Currently there are 17 sites piloting the technology in Switzerland with plans for commercial deployment in 2016, said Jim DeKoekkoek, product line manager for antennas and filters at Kathrein, in an interview with FierceInstaller.

Kathrein also has a video on Youtube explaining this:


Its interesting to see that pavements and roads may become the new battleground for providing connectivity through Wi-Fi and Small Cells.

Related Posts:

Saturday, 5 December 2015

Small Cells in the Lamp posts


This lamp post does look a bit weird and ugly but it could be the future. 'SmartPoles', developed by Philips in conjunction with Ericsson delivers LED lights and LTE powered mobile broadband. According to the official press release:

With cellular data traffic expected to grow 9 times by 2020, according to the Ericsson Mobility Report, and current telecoms infrastructure struggling to respond to this demand, Philips SmartPoles are enabling seamless mobile wireless 4G/LTE connectivity, with the small cell technology from Ericsson housed in the poles to enable increased data capacity in the telecoms network.  Philips SmartPoles were specifically designed and tested to accept FCC licensed wireless mobile network operator equipment. This enables an alternative deployment methodology for 4G LTE broadband services which will connect each pole through a fiber link to its core network.



Back in February TTP in partnership with IP.Access, Quortus and Freescale demoed another concept of small cell on the lamp post. The case study on Freescale's website says:

TTP’s new eNodeB based on the QorIQ Qonverge® BSC9131 addresses these challenges. It fits into a photocell socket of a standard lamp post, providing the quickest possible installation without any modification to the lighting column or its power supply. The solution incorporates LTE Access Point software from ip.access and has been demonstrated with the Quortus ECX Core evolved packet core. It is targeted at 50 metre cells, supporting up to 32 active users at downlink rates of up to 100 Mbps.

TTP have also made an interesting video on this:




This conceptual lamppost above was conceived as a part of Oakland Innovation Project in 2013. While its good, its not ambitious enough as it talks about just WiFi for connectivity.


On the other hand, V-Pole (Vancouver Pole) concept by Canadian writer and artist Douglas Coupland shows what may be possible in the distant future. It is a wireless data, electrical vehicle charging, neighbourhood bulletin board post that is also an LED lamp post that could eliminate some of that clutter. I think it will still take quite a few years before technology can make this possible. Press release from 2012 available here.

I look forward to the day when street lights and lamp posts can do more than simply provide lighting and be a hub for providing connectivity and much more.

Related posts:

Saturday, 7 November 2015

Rural & Remote: 2 case studies


Some good case studies posted by the Small Cell Forum about Rural & Remote small cells. The first one is from Softbank, Japan as follows:



The second is a presentation by Parallel Wireless

as follows:



Saturday, 17 October 2015

Interference cancellation in high density small cells deployment

I looked at some 3GPP Release-12 small cells enhancements in an earlier blog post here. David Chambers, ThinkSmallCell has also published a post on 3GPP small cells enhancements in Release-12 and Release-13 which is available here.

In a recent NTT Docomo technical journal, there is an article that focuses on Interference suppression and cancellation techniques that have been introduced as part of 3GPP Release-12. These techniques can be used in conjunction with high density small cells Hetnet deployment. The article is embedded below.



Sunday, 20 September 2015

Summary of Small Cell Forum Champions day



Small Cell forum held its champions day in Rome this month. There were some interesting case studies and presentations (details below). I have embedded some presentations and provided links to others. Interested people, feel free to explore further.

The Small Cell Forum has identified six key work items where they will be focusing their energies. These are:
  • Small cells in Enterprise
  • License Exempt Spectrum
  • HetNet & SON
  • Virtualization of small cells
  • Multi operator support
  • The role of small cells in 5G, IOT & M2M
Spidercloud did a presentation on Enterprise small cells. They were also one of the sponsors for a study by analyst firm iGR that showed strong demand among Enterprises for Managed Services based on Small Cells.

Cisco shared a case study from a university campus deployment where existing WI-FI APs were ‘upgraded’ to add a small cell capability.



Quortus demonstrated the range of architectures possible with virtualized small cell core networks including the on site MEC server supporting small cells across an enterprise and mission critical small cells supporting public safety applications. See presentation below:



iBwave showed how deployment within the enterprise had improved, with a case study which reduced indoor small cell planning down to one site visit.

MVNO TalkTalk outlined their plans to add LTE small cells to their home routers enriching customer experience as well increasing traffic offload from the macro network. The residential 4G small cells use a dedicated 3.3MHz carrier frequency already compatible with existing 4G handsets to provide good coverage indoors and in the surrounding streets.

Nokia demonstrated the importance of 3D thinking when planning small cell HetNets in dense urban indoor and outdoor environments due to building and user topography.

Qualcomm described how their SON technology provides zero touch integration for both the small cells and the macros, optimizing handovers in both directions.


Huawei shared their vision for small cell evolution, incorporating emerging technologies which leverage license exempt spectrum. Their demonstration of LAA mobility with Vodafone notching up 600Mbps peak rates clearly showing the potential of a joined-up approach to spectrum.


Airspan trials with SoftBank demonstrated an early nFAPI implementation working in a virtualized small cell / macro HetNet. The small cells filled in coverage gaps, and their densification increased capacity. Centralised CoMP and eICIC were demonstrated over a pre-standard nFAPI which works over commonly available packet based transport with significantly less stringent performance requirements than required with CPRI based C-RAN.

Monday, 31 August 2015

The role of Wi-Fi in evolving mobile ecosystem



Came across this old presentation from the Cambridge Wireless FWIC 2015 by Plum consulting. I have written many posts on these topics but this is going to be a hot area for discussion for the coming months and year(s). In fact you might be seeing more on these topics in the next few months on this blog.

Here is the presentation from Plum embedded below.



You can read more about the Cambridge Wireless Future of Wireless international conference in a blog post by ThinkSmallCell here.

Saturday, 8 August 2015

Case Study: Deploying small cell backhaul in China


Came across this old presentation (embedded below) by CCS (Cambridge Communication Systems Limited) of small cell backhaul deployment in China. Having looked at their website they do have regular updates for different deployment. Here is one with China Mobile and here is another one from China Telecom. Interested readers can also read their regular updates here.

Here is their presentation from Small Cells World Summit (Backhaul Summit) from last year:



Sunday, 19 July 2015

Small Cells on the Train - A 2 hop solution


An Ericsson blog post some time back talked about the 2 hop solution for trains. Thinking about it, I quite like the idea. The post talks about 3 main challenges on high speed trains:

There are mainly three reasons communication services on high-speed trains is challenging:


  • First, large penetration loss via the shield of the train. This penetration loss is expected to be 20 to 30 dB.
  • Second, large numbers of handovers in very short time. This is due to hundreds or thousands of users needing handover from one site to another concurrently/sequentially. This phenomenon affects system stability and eats up capacity.
  • Third, high power consumption of user equipment (UE). This is because UE-s on the train need higher power to overcome the large penetration loss in uplink as well.


  • A common currently adopted solution for high speed trains is to densify the network along the railway to combat the large penetration loss. However, this will make the second issue more severe, as handover frequency is increased due to smaller site- to-site distance. Another way is to increase the transmission power of the base stations, which helps to solve the large penetration loss as well. However this cannot solve the third issue. And neither of these solutions are cost-effective.


    Another solution I have discussed before is the Mobile Relay Node which was designed with avoiding multiple handovers when the vehicle moves between different macro cells. Not sure about its status in the standardisation process right now.


    Anyway, coming back to the Ericsson post on Small cells on the train, while the Macro cells provide the TD-LTE backhaul outside, Radio Over Fiber (ROF) is used inside the tunnels to provide the same coverage.


    Within the train Small cells (I guess multiple small cells will be needed in practical deployments, one for each carriage) can provide good coverage to the users and avoid the need for handovers.

    Embedded is the video from Ericsson Taiwan that provides more details about this trial

    Saturday, 4 July 2015

    Disguising Small Cells in Rural areas

    Bethlehem Middle School student Jeremy Luzinski, center, holds a sign Sunday to protest the planned construction of a cell phone tower a few hundred feet from the Eagle Elementary School, which is behind him, in Bethlehem. ( Philip Kamrass / Times Union ) Photo: PHILIP KAMRASS

    We all want good mobile coverage but we do not want the cell towers in our backyard. The main reason being that somehow this can affect our health and maybe cause cancer. There is absolutely no link between cellphone radiation and cancer as I have discussed in an earlier post here. With more studies having been done, any possible links between cellphone tower and existence of cancer seems to diminish. On the WHO list, exposure to radio emissions is now category 2b (possible carcinogens), along with coffee, talcum powder and many other substances to which we all expose ourselves.


    As a result, the mobile operators have started disguising cell phone towers. A cellphone tower inside the bell tower, rear right, is seen over the Resurrection Lutheran Church in Ankeny, Iowa. In rural areas disguising also doesn't affect the scenery.



    The cactus cell tower in Arizona is another great example of coverage by stealth.


    Small cells on the other hand is a whole new ball game. We are so used to seeing WiFi routers that people will probably not bat an eyelid with the small cell above by Vodafone in Cranborne.


    Another disguise is the bird box cell booster, also by Vodafone. It picks up the mobile signal from the nearest network mast, and boosts it to provide better coverage in the surrounding area. This would definitely fit with the surrounding but getting power can sometimes be tricky.

    Do you know of any disguised small cells, please let us know.